Шрифт:
Интервал:
Закладка:
Ну а теперь сравним все наши наивные наблюдения за мячами, гранатами и снежными лавинами с фактами, относящимися к свету. Чтобы облегчить сравнение, будем рассматривать луч света как совокупность крошечных «сгустков» или «комочков», известных под названием фотонов (более подробно свойства света будут обсуждаться в главе 4). Когда мы включаем сигнальные огни или испускаем лазерный луч, мы, на самом деле, выстреливаем пучок фотонов в ту сторону, в которую направлено устройство. Как и в случае с гранатами и лавинами, давайте рассмотрим, как движение фотона выглядит для наблюдателя, который находится в движении. Предположим, что ваша потерявшая рассудок подруга вместо гранаты взяла в руки мощный лазер. Если она стреляет из лазера в вашу сторону, а у вас есть под рукой подходящее измерительное устройство, вы можете обнаружить, что скорость приближения фотонов пучка составляет 300 000 км/с. А что произойдёт, если вы станете убегать, как вы поступили, столкнувшись с перспективой поиграть с ручной гранатой? Какое значение скорости вы получите для приближающихся фотонов? Для большей внушительности, предположим, что в вашем распоряжении звёздный корабль «Энтерпрайз», и вы удираете от своей подружки со скоростью, скажем, 50 000 км/с. Следуя логике традиционного ньютоновского подхода, поскольку вы убегаете, измеренная вами скорость приближающихся фотонов окажется меньше. Соответственно, вы можете рассчитывать, что они приближаются к вам со скоростью, равной 300 000 − 50 000 = 250 000 км/с.
Растущее количество различных экспериментальных данных, первые из которых относятся ещё к 1880-м гг., а также тщательный анализ и интерпретация максвелловской электромагнитной теории света, постепенно убедили научное сообщество, что на самом деле вы получите другой результат. Даже несмотря на то, что вы убегаете, результат вашего измерения скорости приближающихся фотонов всё равно составит 300 000 км/с и ни на йоту меньше. На первый взгляд это выглядит очень забавно и совершенно не согласуется с тем, что происходило, когда вы убегали от приближающегося мяча, фанаты или лавины, однако скорость приближающихся фотонов всегда будет составлять 300 000 км/с. Движетесь ли вы навстречу приближающимся фотонам или преследуете удаляющиеся, не имеет значения: скорость их приближения или удаления будет оставаться совершенно неизменной, и вы всегда получите значение 300 000 км/с. Независимо от относительного движения между источником фотонов и наблюдателем, скорость света всегда будет одной и той же.{7}
Технологические ограничения таковы, что описанные выше «эксперименты» со светом не могут быть проведены. Однако были проведены другие, сопоставимые эксперименты. Например, в 1913 г. голландский физик Виллем де Ситтер предположил, что для измерения влияния движения источника на скорость света могут использоваться движущиеся с большой скоростью двойные звёзды (две звезды, которые вращаются одна вокруг другой). Результаты многочисленных экспериментов такого рода, выполненных за последние восемьдесят лет, продемонстрировали, с впечатляющей точностью, что скорость света от движущейся звезды равна скорости света, испускаемого неподвижной звездой, т. е. 300 000 км/с. Более того, в течение прошлого столетия было проведено большое число других, весьма тщательных экспериментов, в ходе которых скорость света измерялась прямо и косвенно в самых разных условиях. Были проверены также различные следствия постоянства скорости света, и все эти данные подтвердили неизменность скорости света.
Если вам покажется, что это свойство света трудно усвоить, вы можете утешаться тем, что вы не одиноки. В начале XX в. физики потратили немало усилий на то, чтобы опровергнуть его. Они не смогли этого сделать. Эйнштейн, напротив, приветствовал постоянство скорости света, поскольку оно позволяло разрешить противоречие, которое беспокоило его с тех пор, когда он был подростком: независимо от того, с какой скоростью вы движетесь за лучом света, он по-прежнему будет удаляться от вас со скоростью света. Вы не можете сделать воспринимаемую скорость, с которой движется свет, ни на йоту меньше чем 300 000 км/с, не говоря уж о том, чтобы свет казался покоящимся. Вердикт окончательный, обжалованию не подлежит. Но триумфальное разрешение парадокса скорости света было не просто маленькой победой. Эйнштейн понял, что постоянство скорости света означает ниспровержение всей ньютоновской физики.
Истина и её последствияСкорость является мерой того, на какое расстояние может переместиться объект в течение заданного промежутка времени. Если мы едем в автомобиле, двигающемся со скоростью 100 км/ч, это означает, конечно, что мы проедем 100 км, если сможем поддерживать эту скорость в течение часа. В такой формулировке скорость выглядит довольно тривиальным понятием, и вы можете удивиться, зачем поднимать столько шума по поводу скорости мячей, снежных лавин и фотонов. Однако, обратим внимание на то, что расстояние представляет собой характеристику пространства; в частности, оно представляет собой меру того, сколько пространства расположено между двумя точками. Заметим также, что длительность представляет собой характеристику времени, а именно, промежутка времени между двумя событиями. Следовательно, скорость связывает понятия пространства и времени. Рассуждая таким образом, мы видим, что любой факт, который бросает вызов обычным представлениям о скорости, например, постоянство скорости света, может привести к пересмотру общих представлений о пространстве и времени. Именно поэтому странный факт, касающийся скорости света, заслуживает тщательного исследования. Внимательное изучение привело Эйнштейна к удивительным выводам.
Влияние на время. Часть IИспользуя постоянство скорости света, можно с минимальными усилиями показать, что привычная обыденная концепция времени неверна. Представим себе лидеров двух воюющих держав, сидящих на противоположных концах длинного стола переговоров, которые только что пришли к согласию о прекращении огня, но ни один из них не хочет подписывать это соглашение раньше другого. Генеральный секретарь ООН находит блестящее решение. Ровно посередине между двумя президентами помещается электрическая лампа, которая сначала выключена. Когда лампа включается, свет, который она излучает, достигает каждого из президентов одновременно, поскольку они находятся на одинаковом расстоянии от лампы. Каждый из президентов согласен подписать свою копию договора, когда он (или она) увидит свет. Этот план претворяется в жизнь, и соглашение подписывается к взаимному удовлетворению обеих сторон.
Вдохновлённый успехом, Генеральный секретарь использует тот же самый подход к двум другим воющим нациям, которые также достигли мирного соглашения. Единственное различие состоит в том, что эти президенты ведут переговоры, сидя на противоположных концах стола, который находится в вагоне поезда, движущегося с постоянной скоростью. Конкретно, лицо президента Форляндии обращено в сторону движения поезда, а лицо президента Бэкляндии — в обратную сторону. Знакомый с тем, что законы физики остаются неизменными и не зависят от состояния движения до тех пор, пока движение остаётся равномерным, генеральный секретарь игнорирует это различие и проводит церемонию подписания по сигналу электрической лампы точно так же, как и в предыдущем случае. Оба президента подписывают соглашение и празднуют конец вражды в кругу своих советников.
Как раз в этот момент приходит известие, что между представителями обеих стран, наблюдавших за церемонией с платформы, мимо которой проходил поезд, опять начались столкновения. Пассажиры поезда, в котором проходили переговоры, потрясены, услышав, что причина вновь вспыхнувшей вражды, по словам жителей Форляндии, состоит в том, что их одурачили: их президент подписал договор раньше президента Бэкляндии. Но если все, кто присутствовал в поезде, были единодушны в том, что договор был подписан одновременно, как могло случиться, что наблюдатели, расположенные снаружи, видели это иначе?
Давайте рассмотрим более подробно, как всё это выглядело с точки зрения наблюдателя, расположенного на платформе. Сначала лампа в поезде выключена, затем в какой-то момент времени она включается, посылая лучи света в сторону обоих президентов. С точки зрения наблюдателя на платформе президент Форляндии движется навстречу свету, а президент Бэкляндии — удаляется от света. Это значит, что для наблюдателя на платформе свет должен пройти меньший путь, чтобы достичь президента Форляндии, который движется в сторону приближающегося света, чем до президента Бэкляндии, который удаляется от света. Это высказывание не касается скорости света, распространяющегося в сторону двух президентов — мы уже отмечали, что независимо от состояния движения источника и наблюдателя, скорость света всегда остаётся одной и той же. Мы говорим только о том, какое расстояние, с точки зрения наблюдателя на платформе, должен пройти свет от вспышки лампы, прежде чем он достигнет каждого из президентов. Поскольку для президента Форляндии это расстояние меньше, чем для президента Бэкляндии, а скорость света одна и та же при движении в обоих направлениях, свет достигнет президента Форляндии раньше. Вот почему граждане Форляндии сочли себя обманутыми.
- Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан - Физика
- Ткань космоса: Пространство, время и текстура реальности - Брайан Грин - Физика
- Мир физики и физика мира. Простые законы мироздания - Джим Аль-Халили - Прочая научная литература / Физика
- Беседа с Г.И.Шиповым - В. Жигалов - Физика
- В поисках частицы Бога, или Охота на бозон Хиггса - Иэн Сэмпл - Физика
- Неизвестный алмаз. «Артефакты» технологии - Владимир Карасев - Физика
- Коллайдер - Пол Хэлперн - Физика
- Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - Дэйв Голдберг - Физика
- Предчувствия и свершения. Книга 1. Великие ошибки - Ирина Львовна Радунская - Физика
- Популярно о конечной математике и ее интересных применениях в квантовой теории - Феликс Лев - Математика / Физика