Шрифт:
Интервал:
Закладка:
Мадхава из Сангамаграма (ок. 1340–1425), известный более поздним астрономам как Голавид, или «Повелитель сфер», был одним из величайших средневековых математиков. Его работы по исследованию бесконечных рядов были утеряны, но постоянно цитировались более поздними авторами вплоть до шестнадцатого века. Многие результаты, которые были названы в честь европейских математиков, возможно, должны были носить имя Мадхавы. Сюда входят разложение синусов и косинусов в бесконечный многочлен, считающееся заслугой Ньютона, а также формулы малоуглового приближения, представляющие собой часть рядов Тейлора. Эти формулы позволяли составлять тригонометрические таблицы с любой желательной точностью; таблицы Мадхавы были составлены с точностью до восьми десятичных знаков. Мы также находим у него бесконечный ряд, выражающий значение числа π. Один пример, приведенный в стихотворной форме, иллюстрирует, как определенные объекты традиционно использовались для того, чтобы обозначить числа и способствовать их последующему вспоминанию:
Боги [33], глаза [2], слоны [8], змеи [8], огни [3], тройка [3], качества [3], веды [4], наксатры [27], слоны [8] и руки [2] — мудрые говорят, что это длина окружности, когда диаметр круга — 900 000 000 000.
Прочтение чисел справа налево и деление получившегося числа на указанный диаметр приводят к значению π с точностью до одиннадцати десятичных знаков. Такое вычисление с использованием бесконечного ряда сразу напоминает о гениальном индийском математике-самоучке из Кералы — Сринивазе Рамануджане (1887–1920), невероятные способности которого позволили ему поступить в Кембриджский университет.
7. Дом Мудрости
В седьмом веке нашей эры на Аравийском полуострове возникла новая монотеистическая религия, которая должна была втиснуться между христианским и персидским мирами. В 622 году пророк Мухаммад бежал из Мекки и нашел прибежище в Медине. Восемь лет спустя он возвратился во главе армии и триумфально вошел в Мекку. Вдохновленные прозрениями Мухаммада, его последователи распространили слово Корана и создали Арабский халифат, который в пору своего расцвета раскинулся от Кордовы до Самарканда. С 661 года империей, со столицей в Дамаске, правила династия Омейядов, но в 750 году они были свергнуты Аббасидами, которые перенесли столицу в Багдад (с 762 года). Омейяды бежали в испанские земли, где создали Кордовский халифат.
Халифы династии Аббасидов стремились построить в Багдаде новую Александрию и основали там астрономическую обсерваторию, библиотеку и исследовательский центр под названием «Байт аль-Хикма» («Дом Мудрости»). Был задуман и осуществлен гигантский проект, согласно которому на арабский язык были переведены все лучшие научные труды того времени, какие только можно было найти. В арабской математике мы можем увидеть влияние вавилонских, индийских и греческих идей. Их синтез и развитие привели к созданию фундаментальных трудов, особенно по алгебре и тригонометрии. Хотя алгебраическая символика, какой мы ее знаем сегодня, — это намного более поздняя европейская разработка, создание алгебраических рассуждений с большой долей вероятности можно приписать арабским математикам. Более ранняя математика нередко могла алгебраически интерпретироваться, но явное признание того факта, что геометрические проблемы могут быть выражены алгебраически, что геометрические процедуры могут быть преобразованы в алгебраические алгоритмы и что алгебраические процедуры могут выйти за рамки своих геометрических корней, — это вклад арабов в математику.
Очень важной работой в истории алгебры был труд Диофанта Александрийского (ок. 200 — ок. 284) «Арифметика». При том, что даты жизни Диофанта, казалось бы, известны, тем не менее до сих пор нет окончательной ясности, к какому столетию следует его отнести, хотя решение математической загадки, которая, по слухам, была начертана на его могиле, указывает на его возраст в момент смерти. «Арифметика» считается новой ветвью греческой математики, она посвящена решению определенных и неопределенных уравнений в числовой форме, независимо от геометрических обоснований. Ограничение на целочисленные решения ныне сформировалось в отдельную ветвь математики, известную как диофантовы уравнения. Примером таких уравнений может служить поиск пифагоровых троек. Диофант также использовал то, что называют синкопированной алгебраической записью, то есть промежуточной стадией между риторической и полностью символической алгеброй. Эта работа была переведена на арабский язык и тщательно изучалась арабскими математиками.
Одним из наиболее значительных арабских математиков был Абу Джафар Мухаммад ибн Муса ал-Хорезми (ок. 783 — ок. 850). По его имени можно понять, что он приехал из Хорезма — города в Средней Азии. Похоже, что большую часть своей жизни ал-Хорезми провел в Багдаде, где занимал должность директора библиотеки недавно основанного там Дома Мудрости. Его трактат по алгебре «Ал-китаб ал мухтасар фи хисаб ал-джабр ва-л-мукабала» («Книга о восполнении и противопоставлении») позднее оказал огромное влияние на развитие математики в Европе. Наше слово «алгебра» возникло от латинской транслитерации слова «ал-джабр». Ал-Хорезми стремился решить практические задачи, возникающие в торговле, при наследовании и в использовании земли. В алгебраических разделах рассматриваются линейные и квадратные уравнения — термины «восполнение» и «противопоставление» относятся к алгебраическим преобразованиям. Ал-Хорезми разделяет квадратные уравнения на шесть различных групп. В арабской математике требовалось, чтобы все коэффициенты и все ответы были положительными, поэтому вместо того, чтобы писать общий вид уравнения ах2 + bx + с = 0, где х — неизвестная величина, и а, b,с — коэффициенты, что было бы бессмысленным, поскольку сумма положительных элементов никогда не могла быть равна нолю, ал-Хорезми рассматривал уравнения ax2 + bx = с и ax2 + с = bx как два различных типа уравнений. Алгебраические решения для каждого типа уравнения приводятся отдельно, они сопровождаются геометрической иллюстрацией, возможно используя работы Евклида, но он также применяет методы, похожие на вавилонские и индийские. Геометрические иллюстрации алгебраических методов пока еще риторические: ал-Хорезми не развил символический язык, но непринужденность, с которой он перемещается между царствами алгебры и геометрии, значительно отличается от греческого стиля математики.
Ко времени ал-Караджи (953-1029) арабские математики пытались освободить алгебру от геометрических рассуждений и превратить ее в общепринятую технику арифметической работы с неизвестными. Выдающийся персидский математик Фахр ад-Дин Абу Бакр Мухаммад ибн ал-Хусайн ал-Караджи основал очень влиятельную школу алгебры в Багдаде. Его главная работа «Ал-Фахри» содержит учение об алгебраическом исчислении и об определённых и неопределённых уравнениях. Ал-Караджи дал правила для определения суммы арифметической прогрессии, а также суммы квадратов и кубов последовательных чисел, хотя он не сумел определить, что х0 = 1. Ал-Караджи вывел формулу бинома и привел таблицу биномиальных коэффициентов, известную ныне как треугольник Паскаля, — интересно, что персидский математик пришел к этому индуктивным методом. Его доказательство, строго говоря, нельзя назвать доказательством по индукции, тем не менее это числовая и алгебраическая процедура без ссылки на геометрию.
Ко времени Гиясаддина Абу-ль-Фатха Омара ибн Ибрахим ал-Хайяма Нишапури, более известного как Омар Хайям (1048–1131), турки-сельджуки захватили Багдад и объявили там ортодоксальный мусульманский султанат. После обучения в Нишапурском медресе Хайям в 1070 году оставил эти политически опасные земли и перебрался в относительное спокойствие Самарканда. Хотя он больше известен как поэт и автор рубаи, Хайям главным образом был ученым и философом. Именно в Самарканде он написал свою «Алгебру», самая оригинальная часть которой была посвящена решению кубических уравнений геометрическими средствами. Его открытие состояло в том, что решение кубического уравнения можно было найти путем определения точки пересечения двух конических сечений, с которыми он познакомился, читая перевод труда Аполлония Пергского. Например, уравнение вида х3 + ах = с решалось как пересечение соответственно построенного круга и параболы. Он разделил по типам кубические уравнения и их решения, создал алгебраические методы для того, чтобы упростить некоторые сложные кубические уравнения до уже известных типов или до более простых квадратных уравнений. Хотя с точки зрения развития алгебры это может показаться шагом назад, многие аспекты делают вклад Хайяма уникальным. Он утверждал, что древние не оставили никаких сведений относительно решения кубических уравнений, так что нам следует предположить, что у него был достаточный доступ к лучшим библиотекам в империи. Хайям также заявлял, что геометрическое решение кубических уравнений не может быть найдено с использованием только циркуля и линейки — доказательство этого факта будет получено только через семьсот лет. Хайям первым сумел понять, что в кубическом уравнении может быть больше одного решения, но не сумел уловить, что их может быть три. Хайям признавал, что его работа не закончена, и искал полное алгебраическое решение кубического уравнения и уравнений более высокого порядка, аналогичное формуле для решения квадратных уравнений. Но это достижение будет сделано только в эпоху итальянского Ренессанса. Аналитическая геометрия Хайяма стала кульминацией арабского сплава алгебраических и геометрических познаний. Затем до Декарта не было сделано практически ни одного серьезного шага.
- Закон «джунглей» - Шон Кэрролл - Научпоп
- Наука. Величайшие теории: выпуск 6: Когда фотон встречает электрон. Фейнман. Квантовая электродинамика - Мигуэль Сабадел - Научпоп
- Личная жизнь духов и привидений. Путешествие в занятный мир шарлатанов - Уильям Литл - Научпоп
- Ребенок учится говорить. - Марионилла Кольцова - Научпоп
- Бессмертная жизнь Генриетты Лакс - Ребекка Склут - Научпоп
- Уравнение Бога. В поисках теории всего - Каку Митио - Научпоп
- Люди-зомби. Они среди нас - Михаил Бубличенко - Научпоп
- Размышления о думающих машинах. Тьюринг. Компьютерное исчисление - Rafael Lahoz-Beltra - Научпоп
- Нераскрытые тайны природы. Расширяющий кругозор экскурс в историю Вселенной с загадочными Большими Взрывами, частицами-волнами и запутанными явлениями, не нашедшими пока своего объяснения - Джон Малоун - Научпоп
- Великие противостояния в науке. Десять самых захватывающих диспутов - Хал Хеллман - Научпоп