Шрифт:
Интервал:
Закладка:
С чего начинается всякое теоретизирование? С поисков литературы — незачем открывать Америки, уже открытые.
Генетикой кошек мало кто занимался, но все же кое-что найти удалось. Трехцветные, иначе черепаховые, коты иногда появляются, и хоть этот случай для нас не подходит — там обязательно должна быть трехцветной мать,— мы в нем разберемся.
В норме при редукционном делении половые хромосомы самки (XX) расходятся по одной в каждую из гамет (X). Однако на дрозофиле и других объектах показаны случаи так называемого нерасхожденпя. При этом в одну из гамет попадают обе Х-хромосомы (XX), в другую ни одной. После оплодотворения таких гамет зиготы получаются с формулами XXX, XXY, Х0 (зигота типа 0Y не выживает). На человеке, дрозофиле, кошке было прослежено, что лишняя хромосома или ее отсутствие — это всегда болезнь, проявляющаяся, как правило, очень резко. Случай этот для нас не подходит, и не только потому, что мать Анчутки не трехцветна. Кот совершенно здоров.
Можно предположить другой путь возникновения трехцветного кота. В результате транслокации с первой хромосомы ген черной либо рыжей окраски может «перескочить» в какую-либо другую хромосому. Но и это объяснение не подходит к нашему случаю, так как тут нужна либо трехцветная мать, либо рыжий кот. Кстати, возникновение «рыжего» гена в результате мутации в данном случае практически невероятно: оно должно было совпасть с нерасхождением или транслокацией, а вероятность такого совпадения уж очень мала. Но если не подходят гипотезы книжные, нужно придумывать свою.
Гляжу я на кота и думаю: кого он напоминает? По окраске больше всего пятнистую собачку, фокстерьера. И только подумал об этом, как в памяти всплыл старый спор. В начале нашего века генетик Бетсон спорил с противниками менделизма. Те в качестве доказательства несостоятельности законов Менделя приводили скрещивания у пятнистых собачек. В дальнейшем выяснилось, что противоречий с менделизмом в этих скрещиваниях нет, просто здесь происходят на редкость сложные расщепления, видимую картину которых нарушают взаимодействия генов. Чем пятнистые кошки лучше или хуже пятнистых собак? К тому же в рассматриваемом случае мать — сложный гибрид, а генотип отца и вовсе не поддается контролю. Но и тут препятствие: откуда же взялась рыжая окраска? Можно предположить, что пятна у кота по виду лишь рыжие, по происхождению же — палевые, как у сиамских кошек. Правда, палевость — рецессив, но мало ли что может «болтаться» в генотипе отца? А генные взаимодействия могли превратить сплошную палевость сиамок в пятна, сделать ее интенсивной, рыжей... Впрочем, пятна у Анчутки с возрастом темнеют.
Признаю, что эта гипотеза весьма приблизительна, но лучшей предложить не могу. Быть может, подумает кто-либо из читателей?
Один глаз рыжий, другой голубой
Получил я как-то письмо от юнната: «У моей кошки один глаз рыжий, другой голубой. Почему?»
А ведь правда — почему? Именно генетика это должна разъяснить, и интересно это, наверно, не одному читателю — многим.
Почему так случается? Как объяснить?
Мозаичное пятно и его происхождение.
Внимательный наблюдатель такого рода явления замечал, конечно, не раз. Сравнительно часто у черноволосых людей бывает на голове рыжий или светлый клок: рецессивный ген, казалось бы надежно прикрытый доминантным (карие глаза, темные волосы — доминанты, голубые глаза, светлые и рыжие волосы— рецессивы), вдруг появляется на более или менее большом участке. Не только у кошек и других животных, но и среди людей встречаются разноглазые, а еще чаще бывает, что маленький участочек радужной оболочки в карем глазу оказывается серым или голубым.
Все это так называемые мозаичные пятна. Как они образуются, ясно из схемы. Первые два деления прошли нормально, а в одной из клеток, образовавшихся в результате третьего деления, доминантный ген выпал. Это бывает в результате «потери» целой хромосомы в ходе деления, может быть также следствием мутации, произошедшей в доминантном гене, возможны и другие причины. Так или иначе рецессив оказался не прикрыт доминантой, и он проявляется.
Легко понять, что, если выпадение произойдет при втором делении, ровным счетом половина организма составит мозаичное пятно. Такого рода мозаики редки: очень мала вероятность потери хромосомы при наличии всего лишь двух клеток. Но в ходе развития образуется множество клеток. Тут уж даже при самой малой частоте возникновения мутаций они обязательно происходят. Отсюда следует, что каждый из нас мозаик. Но только далеко не всегда мозаичное пятно удается выявить, так как для этого оно должно затрагивать какой-то бросающийся в глаза и генетически изученный признак и быть к тому же достаточной величины.
Не мозаика признаков, а единое целое
Когда был вторично открыт менделизм, им увлеклись многие биологи в разных странах, начали скрещивать, изучать наследование, описывать гены. И это, конечно, привело к резкому скачку в развитии генетики. Но все имеет свои плюсы и минусы, так случилось и здесь. Независимость наследования, комбинаторика привели некоторых к неверному, мало того — нелепому представлению об организме как мозаике признаков. А ведь на деле это совсем не так!
Начать с того, что подавляющее число признаков организма обусловлено вовсе не действием одного, отдельно взятого гена, а взаимодействием, взаимным влиянием многих генов. Нет, например, гена жирномолочности у крупного рогатого скота или, например, гена длинношерстости у овец. Хозяйственно важные признаки, за исключением некоторых наипростейших, например цвет шкурки у норки или каракуля, зависят от большого числа генов, находятся практически под контролем почти всего генотипа.
Новообразование у кур.
В простейших случаях наличие или отсутствие того или иного гена никак не сказывается на действии других генов. Морщинистые семена могут быть у горохов и с красными и с белыми цветами, в бобах с перехватами и без них. Но уже первые генетики открыли множество случаев более сложных. Вот, например, на схеме скрещивание кур с гребнями разных типов. У меня нет возможности подробно разбираться в этом скрещивании — оно очень сложно, англичанин Бетсон в начале века немало поломал над ним голову. Однако схему я привожу. Если читатель и не сумеет в ней разобраться, то, во всяком случае, он поймет: все здесь очень сложно. Гены взаимодействуют, и результаты взаимодействия совсем нелегко объяснить. Не так все просто, как может показаться вначале, как, может быть, показалось кое-кому из читателей, как думали генетики в начале века. Организм — не мозаика признаков. Он неразрывное единство.
А теперь вернемся к пецилиям — здесь продолжить о них рассказ весьма уместно. Самцы у пецшшн гомозиготны но половой хромосоме, и получить красно-черных самцов легко. Но как быть с самками? У них только одна Z-хромосома, вторая же — W — не несет генов окраски. Помочь тут может кроссигновер (перекрест) между хромосомами у самца. Чтобы «поймать» нужную нам самку-перекрестницу, черно-красного самца следует скрестить с какой-либо самкой (красной или черной).
Перекрест между генами R и N происходит у пецилий примерно в 1,5% случаев, поэтому при достаточном числе потомков получить красно-черную самку не так уж сложно. Однако вот тут-то и приходит разочарование. Дело в том, что у красно-черной самки совсем не такая яркая, не такая красивая краснота, как у красно-черного самца. Почему? Казалось бы, одни и те же гены, и разве имеет значение, что «пересадили» один из них в другую хромосому, разместили рядышком с другим геном... Оказывается, имеет!
Это явление, только не на пецилиях, а на дрозофиле и при другом типе генных перемещений, открыли американец А. Стертевант и советские генетики Н. П. Дубинин и Б. Н. Сидоров. Они назвали его эффектом положения. Проявление гена, его действие, оказывается, помимо всего прочего, зависит еще и от места, которое занимает он в хромосоме. Организм— не мозаика признаков; учение об эффекте положения это лишний раз подтверждает.
К чести генетиков, нужно сказать, что от наивных представлений начала нашего века они давно отказались.
ГЛАВА ТРЕТЬЯ. ШТУРМ САМОЙ ПРОЧНОЙ ИЗ КРЕПОСТЕЙ ПРИРОДЫ
Так уж люди устроены: во что бы то ни стало стремятся познать природу, а познав — переделать и изменить ее. В этом сокровенная сущность Науки, отсюда н проистекает ее революционная роль. Только вторглись во владенця королевы наследственности, подсмотрели упорядоченность рядов ее солдат-генов, и сразу в атаку. Но не так-то легко сдался ген. Пинцет и скальпель, традиционное оружие биологов, тут оказались бессильны. И только когда генетики вооружились невиданным ранее скальпелем — Лучом, — пришли к ним важные победы.
- Лестница жизни: десять величайших изобретений эволюции - Ник Лэйн - Биология
- Наука сна. Экскурсия в самую загадочную сферу жизни человека - Дэвид Рэндалл - Биология
- Мозг и разум. Физиология мышления - Владимир Михайлович Бехтерев - Биология / Медицина / Прочая научная литература
- Наследственные заболевания собак - Рой Робинсон - Биология
- Когда отступает фантастика - Новомир Лысогоров - Биология
- Клематисы - Маргарита Бескаравайная - Биология
- Анатомия жива! Удивительные и важные медицинские открытия XX-XXI веков, которые остались незамеченными - Даниил Сергеевич Давыдов - Биология
- Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной - Ричард Докинз - Биология
- Новая наука о жизни - Руперт Шелдрейк - Биология
- По следам Робинзона - Верзилин Николай Михайлович - Биология