Шрифт:
Интервал:
Закладка:
Хорошо, давайте поразмыслим над разными типами входных данных – может, получится сузить эти рамки. Надеюсь, вы помните, что в некоторых синаптических промежутках входной импульс вызывает падение, а не повышение электрического потенциала принимающего нейрона. Они подавляют принимающий нейрон, снижая вероятность возникновения импульса. Итак, на самом деле нам надо узнать, на сколько возбуждающих входов нам нужно подать импульсы, чтобы сгенерировать новый. Брайтенберг и Шюц кропотливо подсчитали и это тоже. Они по-настоящему преданные своему делу, достойные восхищения ученые, которые могут в течение трех часов с энтузиазмом рассказывать вам, как лучше всего нарезать мозг мыши на тонкие пластинки и считать синапсы, без единой паузы, которая позволила бы вам, пойманному в кошмарную ловушку этикета, глотнуть постепенно согревающееся на столе пиво. Да, они подсчитали количество: около 90 % входов нейрона коры головного мозга возбуждающие и только около 10 % – тормозящие. Так что мы можем немного снизить верхний предел количества импульсов – до 6750. Ура. Как я и сказал, немного.
Вы можете возразить: это же вроде бы несложный вопрос – давайте просто посчитаем количество приходящих импульсов, необходимых для того, чтобы напряжение нейрона достигло критической точки. Но для настоящих живых нейронов это сложный вопрос, потому что у нас пока нет реального способа отслеживать происходящее одновременно в тысячах синапсов одного нейрона. Некоторые пытались обойти эту проблему. Ученые из лаборатории Михаэля Хойссера в своем изящном эксперименте записывали данные с одного нейрона коры головного мозга, заставляя другой нейрон отправлять ему возбуждающий импульс [52]. Повторяя это много раз, они обнаружили, что единственный дополнительный входной импульс увеличивает вероятность появления в принимающем нейроне собственного импульса примерно на 2 %. То есть, если бы мы хотели абсолютно гарантированно получить отправку им импульса, нам потребовалось бы отправить ему около 50 дополнительных входных импульсов. Дополнительных – в том смысле, что они должны прийти помимо входных данных, которые этот нейрон получал без нашего участия. Мы подняли нижнюю планку примерно до 50 импульсов, а верхняя планка по-прежнему составляет 6750. Попробуем улучшить результат?
Подсчитать количество входных импульсов будет легче, если мы вместо живого нейрона возьмем модель воображаемого. У нас есть множество разновидностей воображаемых нейронов, которые мы можем записать с помощью математических выражений и смоделировать на компьютере. Ходжкин и Хаксли начали с создания одной из базовых моделей, чтобы доказать, что открытие и закрытие каналов в мембране нейрона действительно вызовет скачок напряжения в аксоне (и рассчитали эту модель, систему из четырех сложных дифференциальных уравнений, с помощью механического арифмометра и карандаша). Нобелевскую премию 1963 года они получили не только за гениальность, но и за упорство. Итак, мы можем взять один из наших воображаемых нейронов, послать ему на его воображаемые синапсы воображаемые импульсы в качестве входных данных и задаться вопросом: сколько импульсов на входе нам понадобится, чтобы получить один на выходе?
Ответ: это зависит от многих факторов. Ну хотя бы примерно? Примерно – от 100 до 200. Грубо говоря, если мы возьмем сложную модель нейрона коры головного мозга, с полностью смоделированными деревьями дендритов и моделью рецепторов, симулирующей реакцию на молекулы нейромедиаторов, а затем заставим все симулированные импульсы появиться на ее входных моделях синапсов примерно в одно и то же время, то получится, что необходимо около 180 входящих импульсов, чтобы гарантировать отправку одного исходящего [53]. Но это при условии, что мы игнорируем массу переменных. Например, будут входящие импульсы поступать постепенно или группами. А некоторые импульсы будут приходить на вход постоянно, поэтому неясно, когда нам следует начинать подсчет. Придется исключить импульсы, поступающие на тормозной нейрон синапсы. И относительную силу синаптической связи каждого из этих межклеточных контактов: чем она выше, тем меньше контактов потребуется. И длительность скачка напряжения, возникающего в синапсе. И все это – лишь для одной конкретной модели одного конкретного типа нейронов коры головного мозга, пирамидального.
Потому что на самом деле вопрос «Сколько нужно входных импульсов для активации нейрона?» крайне глубокий и сложный, ответ на него зависит от множества факторов. И это множество подробно говорит нам о том, как мозг использует импульсы, чтобы функционировать. Выделим из них три: баланс импульсов возбуждения и торможения, поступающих к нейрону, синхронность входных сигналов и те места, где они попадают на само дерево дендритов.
Зона Златовласки [54]
Легион входных импульсов несет опасность. Для рождения нового импульса достаточно нескольких сотен входящих импульсов, но они распределены по тысячам входных линий. Хуже того, количество входов возбуждения превосходит количество входов торможения по крайней мере в пять раз. Даже несколько дополнительных импульсов на этих тысячах входов могут привести к неконтролируемому лавинообразному разгону – импульсы, запускающие импульсы, запускающие импульсы, – что приведет к перегрузке и отключению мозга. Эпилепсия – одна из таких катастроф: мощные волны импульсов пробегают по коре головного мозга, и их так много, что каждый нейрон на принимающем конце волны немедленно достигает своей критической точки, каждый одновременно порождает импульс и запускает следующую волну.
Но такие сбои случаются редко, потому что мозг находится в своей «зоне Златовласки» – не слишком активной, но и не слишком заторможенной, в самый раз [55]. И остается в этой зоне, поддерживая идеальный баланс между возбуждением и торможением.
Этот процесс балансирования был открыт в ходе исследования довольно простого вопроса об интервалах между импульсами. В 1992 году Уильям Софтки и Кристоф Кох обнаружили, что что-то не так с импульсами, посылаемыми нейронами из первой зрительной области коры головного мозга [56], точно такими же нейронами, как те, в которых мы сейчас ожидаем формирования импульса. Просматривая сотни записей возбуждения отдельных нейронов, они заметили, что импульсы, исходящие от каждого нейрона, создавались с удивительно нерегулярными интервалами. За коротким интервалом между импульсами может следовать другой короткий интервал, средний, а иногда длинный. Или любое их сочетание. Фактически для некоторых нейронов порядок интервалов был близок к совершенно случайному. Если бы вы взяли записи их импульсов и перемешали в другом порядке, то не смогли бы восстановить исходную последовательность [57].
Будучи теоретиками, ученые сразу поняли, что здесь что-то неладно. Даже лучшие модели генерации импульсов не дают возможности нейронам делать это со случайными интервалами. Независимо от того, насколько неравномерно импульсы будут поступать на вход этих моделей, импульсы, которые они
- Невидимый мозг. Как мы связаны со Вселенной и что нас ждет после смерти - Карлос Л. Дельгадо - Прочая научная литература / Биология
- Memento mori. История человеческих достижений в борьбе с неизбежным - Эндрю Дойг - Здоровье / Медицина / Прочая научная литература
- Мозг и разум. Физиология мышления - Владимир Михайлович Бехтерев - Биология / Медицина / Прочая научная литература
- Скоростные тесты и тренинги молодости мозга - Павел Стариков - Прочая научная литература / Менеджмент и кадры
- Мозг отправьте по адресу... - Моника Спивак - Прочая научная литература
- Голодный мозг. Как перехитрить инстинкты, которые заставляют нас переедать - Стефан Гийанэй - Прочая научная литература
- Воля и самоконтроль: Как гены и мозг мешают нам бороться с соблазнами - Ирина Якутенко - Прочая научная литература
- Музыка простыней. Раскрывая секреты сексуальной близости в браке - Кевин Леман - Прочая научная литература
- Искусственный разум - Алексей Чачко - Прочая научная литература
- Природа боится пустоты - Дмитрий Александрович Фёдоров - Прочая научная литература