Шрифт:
Интервал:
Закладка:
Рис. 4. Башня-гиперболоид в японском городе Кобе.
В 2004 году архитектор Кен Шаттлворт опубликовал проект 300-метровой гиперболической башни для Лондона (рис. 5). Ей он дал имя «вихрь».
Рис. 5. Проект «Вихрь», 300-метровая башня-гиперболоид для Лондона архитектора Кена Шаттлворта.
Но новому раскрыл идею гиперболической башни американский художник и архитектор Тим Тайлер. Он положил башню на бок, и получился прекрасный мост-труба (рис. 6).
Рис. 6. Если башню-гиперболоид расположить горизонтально, получится мост-тоннель.
Но пока по этой схеме сделан лишь небольшой переход между зданиями. Это не случайно: дело в том, что прямолинейные стержни, пересекаясь на поверхности гиперболоида, образуют ромбы, а ромб — это неустойчивая фигура. Стоит его потянуть вдоль диагонали, как в узлах его происходит концентрация сил. В этом причина того, что башни и мосты — гиперболоиды получаются тяжелое, чем сооружения ферменного типа.
Тим Тайлер предложил новую фигуру с гиперболическими очертаниями (рис. 7).
Рис. 7. Составленная из треугольников гиперболическая фигура Тима Тайлера позволяет строить многокилометровые мосты.
На ее боковой поверхности он расположил не пересекающиеся прямые, как Шухов, а ломаные линии. При их пересечении получаются не ромбы, а треугольники. Треугольник — фигура гораздо более прочная. При давлении на вершины концентрации сил в них не происходит, а деформация получается лишь при изгибе сторон. Для этого нужны усилия в десятки раз более значительные, чем для деформации ромба. Мост-труба Т. Тайлера будет значительно прочнее и легче моста обычной конструкции. Такие мосты могли бы без всяких опор перекрывать десятки километров. Однако технология их постройки пока досконально не проработана.
Идеи Т.Тайлера подхватила группа австрийских архитекторов под руководством Андреаса Кирсштейгера из Венского Технического университета. Они детально проработали на макетах конструкцию гиперболического моста-трубы. Но самое главное, они догадались замкнуть ее в кольцо. Получился прочный и очень легкий дом, который можно строить на мачтах поверх деревьев (рис. 8). Соединяя такие дома при помощи мостов-труб, можно возвести целые воздушные города, висящие над джунглями, тайгой или в горах.
Рис. 8. Андреас Кирсштейгер замкнул гиперболическую трубу в кольцо, и получился сверхлегкий дом.
Представьте: вы вышли из комнаты, сели в лифт, и через минуту ноги утопают во мху дремучего леса… Плохо ли?
Такой дом мы с вамп не построим, но можно для начала сделать домик для кошки, чтобы потом, накопив опыт, построить беседку-вигвам на даче.
Итак, начинаем с малого. Кошачий дом состоит из двух клееных фанерных обручей и шестнадцати фанерных реек (рис. 9).
Рис. 9. Начало сборки домика для кошки.
Обручи склеиваем по авиамодельной технологии из полос 3-мм фанеры шириной 20 мм. Отрезать от листа их надо поперек слоев. Склеивание обручей производим так. На листе ДСП чертим окружность диаметром 300 мм и по ней через каждые 20–30 мм набиваем гвозди диаметром 2 мм. После этого смазываем клеем ПВА или казеиновым две полоски фанеры. (Не используйте синтетические клеи типа «Момент» — они токсичны!) Прижимаем к гвоздям две полоски изнутри со сдвигом и набиваем внутренний ряд гвоздей. Затем к этим полоскам добавляем еще две и так далее до получения цельного обруча.
Пока обручи сохнут, нарежьте вдоль слоев древесины шестнадцать полос фанеры.
Чтобы ваша любимица не занозила лапы, готовые полосы и обручи тщательно ошкурьте, загладьте все углы и заусенцы. Для удобства сборки на внешнем ободе обручей нанесите на равном расстоянии 16 штрихов, а на концах полос просверлите по одному отверстию диаметром 2–3 мм.
Сборку конструкции проще производить при помощи винтов-саморезов и электрической отвертки. Самое трудное — укрепить первые две полосы.
Делается это так. Сначала их закрепляем диаметрально противоположно на нижнем обруче. Но винты до конца не затягиваем. Затем наклоняем их и так же, затягивая не полностью, соединяем с верхним обручем. Затем закрепляем крест-накрест вторую пару полос.
После этого все винты затягиваем окончательно и укрепляем в той же последовательности другие полосы. Делаем это обязательно (для получения симметрии) диаметрально противоположно. Далее места пересечения полос стягиваем винтами. Опять же, заботясь о кошачьих лапах, острые концы винтов нужно обязательно спилить.
У нас получилась труба, в которую любая кошка залезет с превеликой охотой. Но наша задача научиться строить вигвам-гиперболоид, в который положено заходить через дверь. Эта дверь, как и ее рама, должны быть частью поверхности гиперболоида.
В кошачьем доме вместо двери сделаем арочный вход. Для этого выпилим из фанеры дугообразую раму и соединим ее со всеми рейками, к которым она примыкает винтами. Поле этого рейки удалим при помощи пилы.
Вход готов.
Всю сборку лучше вести на винтах и на клею. Прочность конструкции при этом возрастет во много раз.
А. ВАРГИН
ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ
Непонятно, но просто
В основе работы этого двигателя — эффект, открытый в 1881 году немецким ученым Г. Герцем. Эффект был вскоре забыт и через пятнадцать лет открыт заново Г. Квинке. Вот его суть.
Эбонитовый цилиндр на легкоподвижной оси поместили между пластинами конденсатора. Когда к пластинам подвели высокое напряжение от электростатической машины и подтолкнули цилиндр, он начал вращаться и набрал скорость во многие тысячи оборотов в минуту. Объяснили это явление лишь в 1977 году белорусские ученые К.М.Поливанов и Н.В.Татаринова.
Под действием напряжения, приложенного к пластинам конденсатора, диэлектрик цилиндра поляризуется. На поверхности его появляются заряды, наведенные электрическим полем. Они противоположны по знаку зарядам соответствующих пластин (пока цилиндр еще не подтолкнули, силы притяжения этих зарядов к пластинам конденсатора уравновешены и сдвинуть цилиндр с места не могут).
После быстрого толчка заряды в диэлектрике, в основном, останутся на прежних местах. Повернувшись вместе с цилиндром, они окажутся вблизи противоположно заряженной пластины. Силы притяжения начнут вращать цилиндр в направлении толчка.
Известно множество вариантов двигателей, основанных на этом эффекте. Все они крайне просты, не имеют ни щеток, ни коллектора, работают на постоянном токе высокого напряжения более 20 кВ. К сожалению, КПД двигателя низок, и это сдерживает его техническое применение.
Отдельные авторы полагают, что основанные на этом эффекте устройства способны выкачивать энергию из мирового вакуума, работать, не потребляя энергию от внешнего источника. Это предположение, по меньшей мере, спорно. Как бы там ни было, но на Западе немало любителей экспериментирует с моделями двигателей такого типа.
На рисунке 2 вы видите простейшую модель двигателя Герца — Квинке. Ее автор — Джин-Луис Надин (Франция). На тонкую стальную спицу надет пенопластовый цилиндр (его можно изготовить, наполнив пластиковую бутылку пеной, которой строители заделывают швы). Рядом с ним две металлические баночки от напитков, выполняющие роль обкладок конденсатора. Один цилиндр заземлен, другой соединен с источником постоянного тока напряжением 28 кВ. Такое напряжение можно взять от школьной электростатической машины или другого высоковольтного источника питания.
Рис. 2
ВНИМАНИЕ! Все работы с высоким напряжением ведите только в присутствии взрослых!
Несмотря на простоту, двигатель развивает скорость 2770 об/мин., потребляя мощность 2,7 Вт, и с успехом вращает лопасти вентилятора.
Американец Нейл Стайнер предложил еще более простой электромотор (рис. 1).
Рис. 1.
На острие спицы укреплен ротор — донышко пластиковой банки от сметаны, к которой приклеены алюминиевые «крылышки», вырезанные из банок от газированных напитков. По бокам установлены два стеклянных стакана с обкладками из алюминиевой фольги, одна из которых заземлена, например, на батарею отопления. Стоит подвести к обкладкам высокое напряжение, и ротор начнет быстро вращаться.
Напряжение для питания своего двигателя Нейл Стайнер получает от простейшего электростатического генератора — отрезка пластиковой водопроводной трубы без металлической прослойки и куска хлопчатобумажной ткани, между двумя слоями который вшит провод, заземленный так же, как обкладка двигателя.
- Юный техник, 2007 № 09 - Журнал «Юный техник» - Периодические издания
- Юный техник, 2007 № 05 - Журнал «Юный техник» - Периодические издания
- Юный техник, 2000 № 06 - Журнал «Юный техник» - Периодические издания
- Юный техник, 2003 № 09 - Журнал «Юный техник» - Периодические издания
- Юный техник, 2004 № 02 - Журнал «Юный техник» - Периодические издания
- Юный техник, 2011 № 01 - Журнал «Юный техник» - Периодические издания
- Юный техник, 2001 № 08 - Журнал «Юный техник» - Периодические издания
- Юный техник, 2011 № 06 - Журнал «Юный техник» - Периодические издания
- Юный техник, 2008 № 05 - Журнал «Юный техник» - Периодические издания
- Юный техник, 2009 № 09 - Журнал «Юный техник» - Периодические издания