Шрифт:
Интервал:
Закладка:
Если применить отражение к партитуре, получатся новые композиции: инвертированные и ракоходные.
Отражение относительно вертикальной оси: ракоход
В этом случае мелодия записывается заново, начиная с последней ноты, так что ноты исходной мелодии идут в обратном порядке:
Исполнение исходной и ракоходной мелодии подряд — это так называемая мелодическая симметрия, которую также можно назвать мелодическим палиндромом.
Очень известный пример подобной симметрии — «Аллилуйя» из оратории «Мессия» Георга Фридриха Генделя (1685–1759).
Аналогичную симметрию можно увидеть в начале известной композиции I've got Rhythm гениального американского композитора Джорджа Гершвина (1898–1937):
* * *
АМБИГРАММЫ
Симметрия цифр и букв проявляется в словах-палиндромах и числах-палиндромах. Менее известны амбиграммы — слова, написанные так, что при определенном преобразовании (отражении, повороте и т. д.) получается это же или другое слово. На рисунке изображена амбиграмма «Моцарт», автором которой является американец Скоп Ким.
* * *
Отражение относительно горизонтальной оси: инверсия
Рассмотрим инверсию простой мелодии, отраженной горизонтально относительно оси, проходящей через линию ре:
Из следующего рисунка сразу же становится понятно, что при одновременном исполнении двух этих мелодий на пианино нужно нажимать клавиши, симметричные относительно клавиши ре:
Габриэль Форе в своем Messe basse: Agnus Dei в качестве основного приема использует отражение относительно горизонтальной оси. Две первые восьмые ноты начальных тактов отражаются, завершая такт:
В этом фрагменте из Струнного квартета соль минор, соч. 10 французского композитора Клода Дебюсси (1862–1918) первая скрипка и виола в каждый момент времени исполняют противоположные ноты:
В припеве Samba de Uma Nota Só («Самбы одной ноты») бразильского композитора Антонио Карлоса Жобина (1927–1994) второй такт получается из первого поворотом на 180°:
Двадцать четыре каприса для скрипки, написанные итальянским скрипачом и композитором Никколо Паганини (1782–1840), вдохновили многих композиторов на создание различных вариаций, самыми известными из которых являются композиции Сергея Рахманинова (1873–1943). В частности, Рахманинов написал мелодию, симметричную капрису № 24:
В некоторых случаях, как, например, в шестой из «Шести мелодий в унисон» из цикла фортепианных пьес «Микрокосмос» Белы Бартока (1881–1943) наблюдается симметрия звуков по высоте, но не по длительности. Ось симметрии проходит через первую ноту (до) второго нотоносца, выделенную пунктирной линией.
В последнем примере партитура для каждой руки симметрична относительно начальной ноты си-бемоль:
Повороты
Напомним, что поворот на 180° эквивалентен ракоходной инверсии. Применительно к музыке имеет смысл рассматривать только поворот на 180°, так как поворот на 90° не будет иметь смысла, что показано на следующем рисунке:
Точно так же, как и в геометрии, поворот на 180° можно представить как двойную инверсию: по горизонтали и по вертикали:
Гений Вольфганга Амадея Моцарта (1756–1791) проявился особенно ярко в не самом известном его произведении. Это канон для двух скрипок, состоящий из двух мелодий, повернутых друг относительно друга на 180°. Если мы представим поворот как двойное отражение, то увидим, что Моцарт неспроста расположил горизонтальную ось симметрии на линии си: благодаря этому композицию можно записать на одном нотном стане и на одной мелодической линии. При исполнении этого произведения музыканты становятся лицом друг к другу, расположив партитуру между собой. Оба смогут прочитать партитуру благодаря тому, что ключ соль расположен и в начале, и в конце нотного стана. Таким образом, при инверсии страницы нота соль становится нотой ре, ля — до и так далее. Единственной неизменной нотой остается си:
В «Зеркале» Моцарта два скрипача могут читать одну и ту же партитуру в противоположных направлениях, находясь друг напротив друга.
Австрийский композитор Антон Веберн (1883–1945) — одна из ключевых фигур в додекафонической музыке — основном направлении академической музыки начала XX века. В своем Струнном квартете, соч. 28 Веберн определяет исходную серию звуков, на которой затем устанавливаются интервалы. В этом произведении можно увидеть основную мелодию, ее инверсию и ракоход. Кроме того, в центре расположена ось симметрии, отделяющая исходную фигуру от ее ракоходной инверсии.
Ряд из 12 звуков Струнного квартета, ор. 28 Антона Веберна. Числа обозначают число полутонов в каждом интервале. Стрелки указывают, восходящим или нисходящим является данный интервал.
Комбинации преобразований
Вышеперечисленные преобразования причудливым образом сочетаются во множестве музыкальных произведений разных эпох. Они образуют широкий спектр музыкальных средств, которые отличаются огромным разнообразием, так как может изменяться расположение оси симметрии при отражении, расстояние в интервалах при вертикальном переносе и смещение при горизонтальном переносе, например смещение голосов канона.
Изначальная идея канона — имитация одного голоса с помощью последующего голоса или голосов — была дополнена другими видами имитации, в которых оригинальными способами применялись симметрия и ракоходы.
Горизонтальный и вертикальный перенос: интервальные каноны
Из определения канона следует, что второй голос горизонтально смещен относительно первого. Если к этому горизонтальному смещению добавить вертикальный перенос, то получится так называемый интервальный канон, в котором второй голос начинается не с той же ноты, что ведущий голос. Это приводит к изменению тонов и полутонов. Такое изменение называется тональным ответом. Расстояние, на которое смещен второй голос относительно первого, можно использовать в качестве признака классификации канонов. Так, оба голоса могут вступать в унисон (одновременно), второй может быть смещен на секунду, терцию и так далее.
Вертикальный перенос и отражение относительно вертикальной оси: ракоходный перенос
При такой комбинации преобразований исходная мелодия транспонируется, а затем заменяется ракоходом.
Вертикальный перенос и отражение относительно горизонтальной оси: инвертированная транспозиция
Для выполнения этой комбинации преобразований необходима транспозиция мелодии на новую начальную ноту с последующим инвертированием мелодии. Однако эти два преобразования можно свести к одному путем правильного выбора оси симметрии.
На этом примере показана комбинация вертикального переноса со смещением относительно горизонтальной оси (соответствует линии ноты си).
Тот же результат, что и на предыдущей иллюстрации, но полученный одним преобразованием — отражением относительно оси, соответствующей ноте соль.
В хорале «Агнец» (The Lamb) современного английского композитора Джона Тавенера, написавшего его для своего трехлетнего племянника, сочетаются некоторые из вышеописанных преобразований. Это произведение обладает множественной симметрией: исходная мелодия первого такта повторяется во втором (горизонтальный перенос), одновременно с этим вступает второй голос, который представляет собой инверсию исходной мелодии, полученную симметричным отображением относительно горизонтальной оси. Ось симметрии соответствует ноте соль. Третий такт содержит новую мелодию, в четвертом такте происходит ракоход этой мелодии (ее симметричное отражение относительно вертикальной оси). В пятом и шестом тактах повторяется мелодия третьего и четвертого тактов, которую дополняет второй голос — симметрично отображенная относительно горизонтальной оси мелодия пятого и шестого тактов. Следовательно, мелодия шестого такта для второго голоса — это поворот четвертого такта основного голоса на 180°.
- Искусство большего. Как математика создала цивилизацию - Майкл Брукс - Зарубежная образовательная литература / Математика
- Вероятность как форма научного мышления - Виктор Лёвин - Математика
- Том 9. Загадка Ферма. Трехвековой вызов математике - Альберт Виолант-и-Хольц - Математика
- Популярно о конечной математике и ее интересных применениях в квантовой теории - Феликс Лев - Математика / Физика
- φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио - Математика
- Древние мифы и физика. Алгебра, логика и физика о реальности времени - Александр Мальцев - Математика