Рейтинговые книги
Читем онлайн Йога при остеопорозе - Эллен Солтонстолл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 9 10 11 12 13 14 15 16 17 ... 43

Глава 6. Закон Вольфа и йога

Эта история начинается так: немецкий инженер приходит в Музей естествознания в Кельне, где ему предстоит соорудить грузоподъемный кран. Он замечает, что некоторые участки костей в крыле грифа имеют ту же форму и структуру, что и стрела крана, который он конструирует.

Он пишет небольшую статью об этом удивительном сходстве, и ее читает Джулиус Вольф, хирург и анатом. Он решает разобраться в этом вопросе. Вольф изучает множество разных костей и везде замечает определенный рисунок внутренних перекладин. Несколько лет спустя, в 1892 году, он пишет книгу об этом явлении. Вольф предлагает свою теорию для объяснения удивительного естественного процесса в филуме хордовых, к которому относятся все живые существа, имеющие кости и спинной мозг: кости укрепляются там, где это больше всего необходимо.

Он формулирует принцип, выражающий сущность обнаруженного природного явления. Закон Вольфа гласит, что внутренняя архитектура кости, т. е. ее структура и форма, подстраивается под функциональные нагрузки.

Если нагрузка на какую-то кость возрастает, со временем эта кость трансформируется и становится прочнее, чтобы противостоять нагрузке. Обратный процесс тоже имеет место: точно так же кость адаптируется к уменьшению нагрузки, становясь тоньше и слабее. Многочисленные исследования подтвердили, что давление на кость представляет собой огромную силу, отвечающую за форму и прочность кости.

Силы, укрепляющие кость

Откуда берутся эти нагрузки? Какие силы воздействуют на наши кости? Давайте начнем с нескольких примеров.

• Мышечный стимул. Кости в рабочей руке теннисиста становятся гораздо прочнее костей в противоположной руке, поскольку постоянно подвергаются нагрузке.

• Сила земного притяжения. Астронавты, много времени проводящие в космосе, часто возвращаются на Землю с ослабленными костями, поскольку их мышцы были лишены противника – сила тяжести не оказывала на них никакой нагрузки. Их организм забрал из костей значительную часть находившихся там минералов.

Сила тяжести не единственная и не самая большая сила, действующая на кости. Хотя с ней, безусловно, приходится считаться и она играет важную роль в сохранении прочности и структуры костной ткани, две другие силы по своей природе должны быть еще больше: сила биомеханического рычага и динамическая нагрузка.

Сила биомеханического рычага обусловлена нашей анатомией. Каждый ребенок весом 20 кг знает, что сможет поднять папу весом 90 кг, если тот достаточно близко сядет к поперечине качелей из доски, положенной на бревно. Многие мышцы, такие как четырехглавые, прикреплены близко к суставу, через который они перекидываются, что создает значительное усилие рычага. Например, надостная мышца плеча, расположенная в надостной ямке лопатки, крепится к верхнему краю плечевой кости, создавая нагрузку, в пятьдесят раз превышающую любой вес, поднимаемый выпрямленной рукой. Этот выигрыш в силе способен многократно преумножить силу земного притяжения.

Рисунок 17. Этот рычаг значительно увеличивает силу, воздействующую на кость.

Динамическая нагрузка возникает в том случае, когда одна мышца или группа мышц противостоит действию другой, и при выполнении большинства асан йоги такое происходит неслучайно. Создаваемая сила превышает силу тяжести. Поскольку имеются две группы мышц, оказывающие противоположное воздействие, нагрузка на кость удваивается. Астронавты могли бы сократить потерю костной массы и, следовательно, минимизировать остеопороз, если бы в космосе занимались йогой.

Мышечная деятельность заставляет кости укрепляться гораздо активнее, чем только сила тяжести, тем самым защищая их от чрезмерного истончения. Есть вероятность, что этот эффект проявляется даже в условиях дефицита кальция. Современная наука проследила и подтвердила практически каждый этап этого процесса. Было измерено достаточное количество биохимических маркеров формирования кости до и после различных видов деятельности, подразумевающих динамическую нагрузку. Один из биомеханических маркеров, 3Н-уридин, относительно прост в измерении. Его уровень повысился в шесть раз по сравнению с уровнем в ткани, находившейся в состоянии покоя, после нагрузки на кости как в лаборатории, так и в естественной среде. Длительность нагрузки тоже играет важную роль. В ходе другого исследования понадобилось всего восемь секунд динамической нагрузки, чтобы запустить физиологические процессы, предупреждающие ослабление кости. В йоге позы удерживаются дольше восьми секунд.

Это одна из причин эффективности йоги с точки зрения профилактики уменьшения плотности костей и устранения уже возникших проблем: тело на какое-то время замирает в асане. Здесь нет постоянной смены движений, как в теннисе, велосипедной езде и многих других видах спорта. Благодаря занятиям йогой кость достаточно долго подвергается воздействию стимулов, чтобы они могли запустить процесс укрепления.

Механорецепция – секрет волшебства

Мы видели, как остеобласты окружают себя белком, который сами секретируют, и вскоре становятся практически полностью изолированными от других похожих клеток. На этом этапе они превращаются из овальных остеобластов в звездообразные остеоциты. Одна из их новых функций заключается в поддержании равновесия коллагена и кальция, образующих кость. Другая функция состоит в синтезе нового белкового матрикса, из которого будет сформирована новая костная масса. Ключевая роль в этом процессе принадлежит механорецепторам: крошечным участкам клеточной оболочки, реагирующим на механическое воздействие изменением функции клетки. Пример механорецепторов – волоски на рецепторах уха, превращающие колебания воздуха в звуки, которые мы слышим. Все нервные клетки, сообщающие нам о прикосновениях и передающие ощущения движения, относятся к данной категории. Механорецепторы реагируют на какое-то механическое воздействие, на что-то, что давит или ударяет по мембране (звук или прикосновение), и посылают импульс в мозг. Мы не «чувствуем» ухом колебание, а слышим его. Берясь за поручень в общественном транспорте, мы не знаем, насколько глубоко он вжимается в кожу; мы лишь чувствуем холодный металл и его форму. Движение клеточных мембран происходит на микроскопическом уровне. Вероятно, механорецепторы уже очень давно являются частью клеток. Они обнаруживаются у примитивных бактерий и грибов, а значит, появились у какого-то общего предшественника: разделение этих базовых форм жизни произошло около 3,5 миллиарда лет назад.

Рисунок 18. Фронтальный вид мышц головы (слева) и поясницы (справа), полученный путем МРТ. Мышцы головы крепятся преимущественно к лопаткам, ключицам и грудине. Использование рук для поднятия и удержания веса подвергает затылочные позвонки стимулирующей компрессии. То же касается мышц, связывающих между собой тела и поперечные отростки поясничных позвонков.

Еще один пример механорецепторов – остеоциты. Мы, как правило, не знаем, что наши кости сгибаются или скручиваются, однако многие исследования показывают, что именно так и происходит. Поднимаем мы что-то, несем, идем или наклоняемся – при любой нагрузке кости выгибаются и скручиваются. Когда внешние мембраны остеоцитов растягиваются или сжимаются, что происходит при сгибании или скручивании костей, они быстро реагируют на это воздействие, синтезируя новые белковые отростки, формирующие матрикс новой кости.

Остеоциты выпускают длинные щупальца, значительно увеличивая площадь своей поверхности и количество участков, чувствительных к изменению положения. Даже незначительное изменение формы внешней оболочки клетки меняет ее метаболизм и функцию. Чаще всего электрические разряды, возникающие при движении клеточной мембраны, создают достаточную энергию для изменения информационных молекул на ее внутренней поверхности. Эти молекулы продвигаются к ядру. Там они проникают в мембрану ядра и тем самым влияют на ядерные процессы. Подобно нейромедиаторам, эти крошечные курьеры с внешних границ клетки влияют на самый ее центр. Они изменяют ДНК, РНК и белки, впоследствии вырабатываемые клеткой, определяя, что именно эта клетка выпустит в организм. В случае остеоцитов этот процесс приводит к синтезу костеобразующего белка, который затем выделяется клеткой в костный матрикс, окружая его. Матрикс притягивает к себе кальций и другие минералы, укрепляющие кость, после чего подавляет движение мембран остеоцитов. Это делает кость более жесткой и устойчивой к сгибанию, а следовательно, ослабляет стимуляцию, приводящую к образованию новой костной ткани. Этот процесс является биохимической основой закона Вольфа.

1 ... 9 10 11 12 13 14 15 16 17 ... 43
На этой странице вы можете бесплатно читать книгу Йога при остеопорозе - Эллен Солтонстолл бесплатно.

Оставить комментарий