Шрифт:
Интервал:
Закладка:
Наконец, следует упомянуть еще об одном применении ЖРД, имеющем место в последнее время. Для изучения поведения самолета при большой скорости полета, приближающейся к скорости звука и превышающей ее, требуется проведение серьезной и дорогостоящей исследовательской работы. В частности, требуется определение сопротивления крыльев самолета (профилей), которое обычно производится в специальных аэродинамических трубах. Для создания в таких трубах условий, соответствующих полету самолета на большой скорости, приходится иметь силовые установки очень большой мощности для привода вентиляторов, создающих поток в трубе. Вследствие этого сооружение и эксплоатация труб для проведения испытания при сверхзвуковых скоростях требуют огромных затрат.
В последнее время, наряду со строительством сверхзвуковых труб, задача исследования различных профилей крыльев скоростных самолетов, как, кстати сказать, и испытания прямоточных ВРД, решается также с помощью жидкостно-реактивных
Фиг. 41. Ракетный снаряд с ЖРД.
двигателей. По одному из этих способов исследуемый профиль устанавливается на дальней ракете с ЖРД, подобной описанной выше, и все показания приборов, измеряющих сопротивление профиля в полете, передаются на землю с помощью радио-телеметрических устройств.
Фиг. 42. Схема устройства мощного зенитного снаряда с ЖРД.
7 — боевая головка; 2 — баллон со сжатым азотом; 3 — бак с окислителем; 4 — бак с горючим; 5 — жидкостно-реактивный двигатель.
По другому способу сооружается специальная ракетная тележка, передвигающаяся по рельсам с помощью ЖРД. Результаты испытания профиля, установленного на такой тележке в особом весовом механизме, записываются специальными автоматическими приборами, расположенными также на тележке. Такая ракетная тележка показана на фиг. 43. Длина рельсового пути может достигать 2–3 км.
Фиг. 43. Ракетная тележка для испытания профилей крыльев самолета.
5. БУДУЩЕЕ РАКЕТНЫХ ДВИГАТЕЛЕЙ
Ракетные двигатели часто называют двигателями будущего. Многие свойства ракетных двигателей действительно дают основание для такого заявления. Следует иметь в виду, что несмотря на многовековую известность принципа движения с помощью прямой реакции ракетные двигатели по— существу находятся на самой заре своего развития.
Каково же будущее этих двигателей, как мы его можем себе представить на основании знаний сегодняшнего дня?
Важнейшим направлением в усовершенствовании ракетных двигателей является подыскание новых топлив, обеспечивающих большую удельную тягу, т. е. большую скорость истечения газов. Во всем мире ведутся интенсивнейшие исследования в этой области, причем результаты этих работ имеют большое военное значение, как, впрочем, и все работы по ЖРД. Родоначальник ракетной техники К. Э. Циолковский в своих работах также уделял много внимания выбору топлива для ракетного двигателя, причем некоторые из его указаний не потеряли своего значения и до сих пор. Много новых путей в этом направлении указали талантливые русские исследователи Ю. В. Кондратюк и Ф. А. Цандер.
Ближайшей задачей является подыскание жидких топлив, обеспечивающих большую скорость истечения и, следовательно, удельную тягу.
Новые возможности открылись бы при использовании некоторых металлов — алюминия, магния и других — в качестве горючего, причем можно было бы использовать теплоту реакции их окисления, т. е. соединения с кислородом, или же реакции соединения с фтором[19], которая сопровождаемся выделением большого количества тепла.
Большие заслуги в области исследования вопроса о применении металлов в качестве горючего для ракетных двигателей и сама идея о таком использовании металлов принадлежат рано умершему советскому ученому Цандеру. Цандер показал также, что решение этой проблемы значительно подвинуло бы вперед дело создания космического ракетного корабля, так как позволило бы использовать часть металлической конструкции самой ракеты в качестве горючего. Это, естественно, увеличило бы конечную скорость корабля, так как означало бы увеличение отбрасываемой массы и уменьшение конечной массы ракеты. Цандер предложил несколько конструкций ракеты, в которых реализовывалось это предложение. Он же произвел с этой целью первые успешные опыты по сжиганию металлов. На первом этапе, очевидно, металлическое горючее будет применяться не в чистом виде, а в качестве суспензий (взвесей) металлической пыли в обычных горючих. На фиг. 44 показан ЖРД, проходящий стендовые испытания на такой суспензии; примесь алюминия к обычному горючему дает при сгорании белый дым видный на фотографии. Для сравнения на другой фотографии (фиг. 45) показан этот же двигатель, работающий на топливе без примеси алюминия.
Фиг. 44. Испытание ЖРД на топливе с добавкой алюминия
Совершенно новые возможности открыло бы применение однокомпонентного, так называемого атомарного топлива. Дело в том, что для разложения молекул разных веществ на атомы обычно приходится затрачивать большое количество тепла или другой энергии (например электрической), а при обратном соединении атомов в молекулы это количество тепла снова выделяется. Так, молекулы водорода, как известно, состоящие из двух атомов, можно расщепить с образованием атомарного водорода пропусканием водорода через вольтову дугу. Сразу же вслед за этим атомы водорода вновь соединяются в молекулы с выделением большого количества тепла, вследствие чего водород приобретает весьма высокую температуру. Этот процесс используется в так называемой атомно-водородной сварке. Если бы можно было воспользоваться атомарным водородом в качестве топлива для ракетных двигателей, то можно было бы получить исключительно большие скорости истечения, достигающие 10 000 м/сек, т. е. в четыре-пять раз больше существующих скоростей. Другим преимуществом этого топлива является то, что при его использовании нет нужды во втором компоненте — окислителе. Использование атомарного водорода означало бы по существу использование электрической энергии для создания тяги, так как разложение молекул водорода на атомы происходит при затрате электрической энергии. Однако практически использовать атомарный водород в качестве топлива в ракетном двигателе пока не удается, так как соединение атомов водорода в молекулы происходит сразу же, через сотые доли секунды, после их расщепления в вольтовой дуге. Очевидно, что сначала надо найти способ сохранения атомарного водорода, либо способ расщепления молекул водорода в самой камере сгорания, например, с использованием для этой цели атомной (ядерной) энергии. Имея в виду, что жидкий водород имеет очень небольшой удельный вес (около 0,07), вследствие чего для его хранения потребовались бы баки большого объема, могло бы оказаться целесообразным применение в качестве атомарного топлива других, более плотных, веществ. Например, можно было бы применить обычную воду, каждая молекула которой, как известно, состоит из двух атомов водорода и одного атома кислорода. Удельная тяга при этом была бы, правда, ниже, чем в случае атомарного водорода и составила примерно 3/4 от последней.
Усовершенствование существующих конструкций ЖРД обычно характеризуется увеличением давления в камере сгорания от 15–20 ата, принятых в настоящее время, до 30–50 и более, вплоть до 100 ата, так как при этом уменьшаются размеры и улучшается работа двигателя.
Увеличение абсолютных значений тяги, т. е. мощности существующих ЖРД, не встречает принципиальных трудностей. Двигатели с тягой в 50 и даже 100 тонн могут быть созданы уже при современном уровне техники. Так, на фиг. 46 показана фотография камеры сгорания (с змеевиком охлаждения) опытного 100-тонного двигателя. Разрез модели двигателя с такой системой охлаждения показан на фиг. 47.
Одним из чрезвычайно серьезных условий дальнейшего развития ЖРД является улучшение охлаждения стенок камеры сгорания и сопла, а также подыскание для них более жаростойких материалов; без этого невозможно дальнейшее повышение температуры газов в камере сгорания, а следовательно, и удельной тяги двигателя. Одним из перспективных методов охлаждения является сравнительно новый способ, получивший название «охлаждения выпотеванием». В этом случае стенки изготовляются из пористого материала и через эти мельчайшие поры продавливается снаружи внутрь камеры или сопла вода или иная охлаждающая жидкость либо газ (например, азот), которые затем образуют защитный слой на внутренней поверхности стенки (эта поверхность как бы «потеет»). Температура стенки при этом способе охлаждения оказывается значительно более низкой, чем при других известных способах.
- Танковая мощь СССР часть I Увертюра - Михаил Свирин - Техническая литература
- Танковая мощь СССР часть III Золотой век - Михаил Свирин - Техническая литература
- Энергетические войны – 2 - Владимир Гришин - Техническая литература
- Светлые века. Путешествие в мир средневековой науки - Себ Фальк - Исторические приключения / Техническая литература
- Полвека в авиации: записки академика - Евгений Федосов - Техническая литература
- Сердца и камни - Оскар Курганов - Техническая литература
- Битва за звезды-2. Космическое противостояние (часть II) - Антон Первушин - Техническая литература
- Электротехнические и электромонтажные работы - Георгий Лаптев - Техническая литература
- История отечественного танкостроения в послевоенный период - А. Тарасенко - Техническая литература
- Соколиная охота (Малые противолодочные корабли проектов 1141 и 11451) - Г. Дмитриев - Техническая литература