Шрифт:
Интервал:
Закладка:
Важнейшим параметром, характеризующим часто-топреобразовательные лампы, является крутизна преобразования. Она представляет собой отношение амплитуды первой гармоники переменной составляющей промежуточной частоты, полученной в анодном токе, к амплитуде напряжения сигнала. При этом напряжения на экранирующих и защитной сетках и аноде постоянны.
Крутизна преобразования растет с увеличением амплитуды напряжения гетеродина.
Многие частотопреобразовательные лампы имеют удлиненные характеристики для осуществления автоматической регулировки усиления преобразовательного каскада. Но тогда при приеме сильных сигналов, т. е. при смещении рабочей точки на нижние нелинейные участки характеристики, резко возрастают амплитуды комбинационных колебаний, которые могут быть причинами помех в приемнике.
В современной аппаратуре используют комбинированные лампы, имеющие в одном баллоне две, а иногда три или четыре отдельные системы электродов. Применение таких ламп уменьшает габариты аппаратуры и упрощает монтаж. На схематических изображениях комбинированных ламп для упрощения часто показывают только один подогреватель и один катод. Во многих лампах, особенно предназначенных для высоких частот, ставят экраны, устраняющие паразитную емкостную связь между отдельными системами электродов.
Конструктивное выполнение электродов комбинированных ламп бывает различным. Часто встречаются отдельные электродные системы с экраном. В некоторых лампах делают общий катод, а электронные потоки, идущие от разных частей его поверхности, используются каждый в своей системе электродов. Возможна установка вдоль общего катода электродных систем с разделительными экранами.
40. СПЕЦИАЛЬНЫЕ ТИПЫ ПРИЕМНО-УСИЛИТЕЛЬНЫХ ЛАМП
Увеличение крутизны достигается уменьшением расстояния «сетка – катод» до нескольких десятков микрон. Но изготовление ламп с малым расстоянием «сетка – катод» сложно и недостаточно надежно, так как имеется опасность замыкания сетки с неровной поверхностью оксидного катода. Другим методом повышения крутизны является применение катодной сетки, расположенной между управляющей сеткой и катодом и имеющей некоторый положительный потенциал. Электроны, испускаемые катодом, ускоряются катодной сеткой, пролетают в ее просветы и создают на очень малом расстоянии от управляющей сетки область повышенной плотности объемного заряда и второй потенциальный барьер. На его высоту напряжение управляющей сетки влияет очень сильно. В результате управляющая сетка может весьма эффективно управлять электронным потоком.
Значительное повышение крутизны достигается в лампах со вторичной эмиссией. Исследования по применению вторичной эмиссии в лампах велись давно, но долго не удавалось сконструировать такие лампы, работающие устойчиво и создающие не слишком большие собственные шумы. Причина этих шумов – неравномерность процесса вторичной эмиссии. Найдены новые сплавы тяжелых металлов с легкими, например меди с бериллием, которые дают высокую и устойчивую вторичную эмиссии. При их использовании шумы снижаются, хотя они все же больше, чем в обычных лампах.
Лампы со вторичной эмиссией имеют дополнительный электрод – вторично-эмиссионный катод (динод). В него подается положительный потенциал, меньший, чем на анод. Первичные электроны, летящие с катода, ударяют во вторично-эмиссионный катод и выбивают из него вторичные электроны, которые летят к аноду, имеющему более высокий положительный потенциал. Поток вторичных электронов в несколько раз больше, чем поток вторичных электронов. Именно потому крутизна лампы получается высокой.
Ток вторично-эмиссионного катода незначительно меньше анодного тока и во внешней части цепи имеет направление, обратное анодному току. Крутизна лампы по току вторично-эмиссионного катода обычно незначительно меньше, чем крутизна по анодному току. Электроны анодного тока движутся по проводнику внешней части анодной цепи от анода, а электроны тока вторично-эмиссионного катода во внешней цепи движутся по направлению к этому катоду, так как внутри лампы от него уходит больше вторичных электронов, чем приходит к нему первичных.
При подаче на сетку переменного напряжения вследствие противоположности направлений токов анода и вторично-эмиссионного катода на нагрузочных резисторах, включенных в цепи этих электродов, получают усиленные переменные напряжения, находящиеся в противофазе.
Обычный каскад усиления переворачивает фазу напряжения. А в цепи вторично-эмиссионного катода получается усиленное напряжение, совпадающее по фазе с переменным напряжением сетки. Это свойство позволяет весьма просто осуществить положительную обратную связь между цепями вторично-эмиссионного катода и управляющей сетки для генерации колебаний различной формы, увеличения усиления, уменьшения ширины полосы частот пропускаемых колебаний и других целей.
Выпускаются сверхминиатюрные приемно-усили-тельные металлокерамические триоды и тетроды, называемые нувисторами. Они предназначены для усиления, генерирования и преобразования частоты. Они имеют миниатюрный металлокерамический баллон.
41. ВИДЫ ЭЛЕКТРИЧЕСКИХ РАЗРЯДОВ В ГАЗАХ
Различают самостоятельные и несамостоятельные разряды в газе. Самостоятельный разряд поддерживается за счет действия только электрического напряжения. Несамостоятельный разряд может существовать при условии, что, помимо электрического напряжения, действуют еще какие-либо внешние ионизирующие факторы. Ими могут быть лучи света, радиоактивное излучение, термоэлектронная эмиссия накаленного электрода и др. Рассмотрим основные виды электрических разрядов, встречающиеся в ионных приборах.
Темный (или тихий) разряд является несамостоятельным. Он характеризуется плотностями тока порядка микроампер на квадратный сантиметр и весьма малой плотностью объемных зарядов. Поле, созданное приложенным напряжением, при темном разряде практически не изменяется за счет объемных зарядов, т. е. их влиянием можно пренебречь. Свечение газа отсутствует. В ионных приборах для радиоэлектроники темный разряд не используется, но он предшествует началу других видов разряда.
Тлеющий разряд относится к самостоятельным. Для него характерно свечение газа, напоминающее свечение тлеющего тела. Плотность тока при этом разряде достигает единиц и десятков миллиампер на квадратный сантиметр и получаются объемные заряды, существенно влияющие на электрическое поле между электродами. Напряжение, необходимое для тлеющего разряда, составляет десятки или сотни вольт. Разряд поддерживается за счет электронной эмиссии катода под ударами ионов.
Основными приборами тлеющего разряда являются стабилитроны – ионные стабилизаторы напряжения, газосветные лампы, тиратроны тлеющего разряда, цифровые индикаторные лампы и декатроны – ионные счетные приборы.
Дуговой разряд получается при плотностях тока, значительно больших, чем в тлеющем разряде. К приборам несамостоятельного дугового разряда относятся газотроны и тиратроны с накаленным катодом; в ртутных вентилях (экзитронах) и игнитронах, имеющих жидкий ртутный катод, а также в газовых разрядниках происходит самостоятельный дуговой разряд.
Дуговой разряд может быть не только при пониженном, но и при нормальном или повышенном атмосферном давлении.
Искровой разряд имеет сходство с дуговым. Он представляет собой кратковременный (импульсный) электрический разряд при сравнительно высоком давлении газа, например при нормальном атмосферном. Обычно в искре наблюдается ряд импульсных разрядов, следующих друг за другом.
Высокочастотные разряды могут возникать в газе под действием переменного электромагнитного поля даже при отсутствии токоподводящих электродов (безэлектродный разряд).
Коронный разряд является самостоятельным и используется в ионных приборах для стабилизации напряжения. Он наблюдается при сравнительно больших давлениях газа в случаях, когда хотя бы один из электродов имеет очень малый радиус кривизны. Тогда поле между электродами получается неоднородным и около заостренного электрода, называемого коро-нирующим, напряженность поля резко увеличена. Коронный разряд возникает при напряжении порядка сотен или тысяч вольт и характеризуется малыми токами.
42. ТЛЕЮЩИЙ РАЗРЯД
Рассмотрим тлеющий разряд между плоскими электродами. При отсутствии разряда, когда объемных разрядов нет, поле однородно и потенциал между электродами распределен по линейному закону. В электронном (вакуумном) приборе при наличии эмиссии существует отрицательный объемный заряд, создающий вблизи катода потенциальный барьер. Этот барьер препятствует получению большого анодного тока.
- Разработка функциональных схем автоматизации технологических процессов - Валентина Валиуллина - Техническая литература
- Светлые века. Путешествие в мир средневековой науки - Себ Фальк - Исторические приключения / Техническая литература
- Дирижабли на войне - Валерий Агатонович Обухович - Военная техника, оружие / Техническая литература
- Танковая мощь СССР часть I Увертюра - Михаил Свирин - Техническая литература
- Танковая мощь СССР часть III Золотой век - Михаил Свирин - Техническая литература
- В мире чёрного золота - Владимир Виджай - Техническая литература
- Полвека в авиации: записки академика - Евгений Федосов - Техническая литература
- Методы тестирования радиооборудования сети LTE. Подробный анализ - Александр Константинов - Техническая литература
- Художественная обработка металла. Черные металлы. Железо. Чугун. Сталь - Илья Мельников - Техническая литература
- Энергетические войны – 2 - Владимир Гришин - Техническая литература