Рейтинговые книги
Читем онлайн Азбука звездного неба. Часть 2 - Сторм Данлоп

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 14 15 16 17 18 19 20

Естественно, открытие новой — дело весьма почетное, и многие любители осуществляют визуальное или фотографическое «патрулирование» звездного неба в надежде на успех. Как и при поисках комет, здесь требуется хорошо знать звездное небо. Чтобы избежать «фальшивых открытий», необходимо детально изучить расположение на небе переменных других типов.

Фотография — самый удобный способ непрерывного и оперативного наблюдения за звездным небом. Чтобы исключить неприятности, связанные с неизбежными дефектами в фотоэмульсии, лучше делать одновременно два снимка одного и того же участка неба. После фотографирования снимки следует сразу же проявить и внимательно просмотреть — вдруг вам удастся обнаружить новую на самой ранней стадии появления!

Рис. 130. Кривая изменения блеска новой V 1500 Cyg, которая вспыхнула в 1975 г.Рис. 131. Новая звезда V 1500 Cyg вблизи максимума светимости, когда ее блеск составлял 2m (слева), и много недель позднее, когда блеск упал до 11m.

Чаще всего новые вспыхивают в областях неба, ближайших к Млечному Пути; именно здесь и нужно прежде всего осуществлять патрулирование. Систематические многолетние исследования такого рода совместно с данными отдельных наблюдателей позволили открыть ряд новых звезд. Информация, полученная любителями, нередко представляет огромный интерес и для профессиональных астрономов.

Двойные и кратные звёзды

Многие звезды видны на небе так близко друг от друга, что кажутся двойными. Некоторые из них в действительности никак не связаны друг с другом. Находясь на различных расстояниях от Земли, они просто случайно оказались рядом на луче зрения; их двойственность — кажущееся явление. Звезды такого типа называются оптическими двойными. Другие более многочисленные двойные действительно физически связаны между собой; обращаясь по орбитам относительно друг друга, они образуют так называемые двойные системы. Наблюдаются также кратные системы, состоящие из трех и более звезд. Многие двойные звезды (обоих типов) при наблюдениях в бинокль и небольшой телескоп выглядят весьма необычно и красиво. Невооруженным глазом легко различить ζ Большой Медведицы, Мицар, с ее компаньоном Алькором. Глазом легко различить двойную звезду ε Лиры, но лучше ее рассматривать в бинокль. В телескоп с увеличением 100-200 раз эта звезда представляется четырехкратной системой.

Рис. 132. Две яркие звезды α (слева) и β Центавра, α Центавра представляет собой кратную систему, состоящую из близкой пары ярких звезд (звездные величины 0m и 1,4m) и Проксимы Центавра (11m), находящейся на значительном расстоянии от этой пары.

Таблица №14

Двойные звёзды

Наблюдения двойных звезд позволяют достаточно просто определить разрешающую способность телескопа; список наиболее удобных для этих целей объектов представлен в таблице. Не огорчайтесь, если разрешение телескопа, полученное на основании таких измерений, не соответствует его теоретическому значению — экспериментальные результаты зависят не только от опыта наблюдателя, но и от условий наблюдения.

В двойных системах видимое положение компонентов меняется по мере их движения относительно друг друга; обычно наиболее яркую звезду принимают за главную и положение более слабой определяют по отношению к ней. Измеряя таким образом относительное положение звезды в течение нескольких лет, можно построить ее орбиту. Форма и размеры видимой орбиты во многом зависят от ее ориентации в пространстве. В моменты, когда компоненты пары расходятся, их легко различить по отдельности; временами же они настолько близко подходят друг к другу, что едва различимы.

Измерения двойных звезд

Для измерения положений звезд в двойных системах следует использовать длиннофокусные телескопы (предпочтительнее рефракторы и катадиоптрические системы) с жесткой монтировкой, снабженные системой слежения и микрометрами. Среди множества разнообразных микрометров наиболее распространен и легко изготовляем нитяной микрометр, который состоит из неподвижной и перемещающейся нитей (довольно часто нити микрометра делают из паутинок). При наблюдении двойных звезд измеряют позиционный угол (ПУ)[6] и расстояние между компонентами. Из-за значительных инструментальных ошибок весьма трудно точно определить эти величины при одном измерении, для увеличения точности необходимо произвести много отдельных измерений и вычислить среднее значение. По-видимому, вследствие сложности самих исследований и слишком жестких требований, предъявляемых к телескопу и измерительным устройствам, наблюдения двойных звезд мало привлекают астрономов-любителей.

Довольно часто компоненты двойной системы расположены настолько близко друг к другу, что их невозможно увидеть раздельно ни в один телескоп. Тем не менее при их спектральных исследованиях удается заметить раздвоение спектральных линий, свидетельствующее о наличии двойной системы. Такие спектральные двойные весьма распространены. Установлено, что большинство звезд являются двойными и кратными системами. В этом смысле Солнце скорее исключение, так как не имеет звезды-компаньона (во всяком случае, насколько это известно сейчас).

Звёздные скопления

Наряду с двойными и кратными системами существуют также звездные скопления. Они подразделяются на два основных типа: рассеянные (часто их называют галактическими) и шаровые (сферической формы). (Скопления, особенно рассеянные, лучше наблюдать в инструменты с широким полем зрения.

Рассеянные скопления. Рассеянные скопления имеют неправильную форму и состоят из звезд, которые одновременно образовались из единого газово-пылевого облака. По этой причине все звезды рассеянного скопления имеют один и тот же возраст и одинаковый химический состав. Рассеянные скопления в основном сосредоточены в спиральных рукавах нашей Галактики, поэтому на звездном небе они в основном расположены в области Млечного Пути. Рассеянные скопления существенно различаются по числу звезд и степени их концентрации. Так, некоторые из них настолько растянуты, что выглядят как едва заметные сгущения, трудно различимые на фоне окружающих звезд. Обычно это старые рассеянные скопления, в которых звезды вследствие собственных движений как бы «разбежались» в окружающее пространство, так что их принадлежность к скоплению стала едва заметна. Более молодые скопления, например Плеяды (М45), наоборот, более компактны и содержат много горячих молодых звезд.

Рис. 133. Шаровое скопление М13 в созвездии Геркулес – один из самых удивительных объектов северного неба.

Таблица №15

Звёздные скопления

Рис. 134. Молодые, горячие звезды в рассеянном скоплении Плеяды и голубые отражательные туманности.

Шаровые скопления. Шаровые скопления представляют собой плотные шарообразные образования, содержащие до нескольких миллионов звезд. Это очень старые объекты, сформировавшиеся из первичного, не содержащего тяжелых элементов вещества на ранних этапах эволюции Галактики. Согласно современным представлениям тяжелые химические элементы образуются при термоядерных реакциях, протекающих внутри звезд. Заканчивая свой жизненный звезды взрываются, а их вещество, обогащенное тяжелыми элементами, рассеивается в межзвездном пространстве и служит лом, из которого в дальнейшем формируются звезды нового поколения. В отличие от рассеянных скоплений шаровые концентрируются не в спиральных рукавах, а ближе к центру Галактики, который расположен в направлении созвездия Стрелец. Шаровые скопления обнаружены также далеко от центра — в области галактического гало.

Туманности

Межзвездное пространство в Галактике заполнено газом и пылью, которые довольно часто собираются в плотные облака — так называемые газово-пылевые туманности. По внешнему виду их делят на несколько типов.

Темные туманности. Плотное газово-пылевое облако, загораживающее свет расположенных за ним звезд, выглядит на фоне окружающих звезд темной туманностью. К числу таких туманностей относятся Большой Провал в созвездии Лебедь и туманность Угольный Мешок в созвездии Южный Крест. Наряду с такими плотными туманностями имеется много менее заметных, которые в основном сосредоточены в темной полосе, вытянувшейся вдоль Млечного Пути. Наблюдать эти слабые туманности можно лишь при благоприятных условиях, используя небольшое увеличение.

Отражательные туманности. Пыль газово-пылевого облака может отражать свет горячих звезд, расположенных поблизости. Тогда эти облака предстают нашему взору в виде светлых отражательных туманностей. Среди этих туманностей очень мало таких, которые можно увидеть невооруженным глазом. Например, при хорошей видимости можно «угадать» слабую отражательную туманность в скоплении Плеяды. Однако отражательные туманности хорошо заметны на фотографиях, сделанных с длительной экспозицией. Обычно они имеют голубой цвет, поскольку отражают свет молодых и горячих звезд, находящихся по соседству. Хотя в таких туманностях довольно много газа, только в некоторых случаях звезды достаточно горячи, чтобы вызвать его свечение.

1 ... 11 12 13 14 15 16 17 18 19 20
На этой странице вы можете бесплатно читать книгу Азбука звездного неба. Часть 2 - Сторм Данлоп бесплатно.
Похожие на Азбука звездного неба. Часть 2 - Сторм Данлоп книги

Оставить комментарий