Шрифт:
Интервал:
Закладка:
Спокойный и сосредоточенный, как всегда, Вавилов продолжал свои исследования. Одновременно он вел большую научно-организационную работу. В феврале двадцатого года лаборатории, руководимые П. П. Лазаревым, были преобразованы в Институт физики и биофизики Наркомздрава, и Сергей Иванович получил в новом институте свой первый административный пост — заведующего отделом физической оптики.
Это ко многому обязывало, особенно если учесть, что физической оптикой в стране тогда почти никто больше не занимался. Правда, кое-какие работы в том же направлении велись и в Государственном оптическом институте в Петрограде, причем под руководством такого выдающегося оптика, как профессор Дмитрий Сергеевич Рождественский. Но и этот институт был молод: основанный в 1918 году, он только разворачивал свою деятельность и не мог ослабить чувства ответственности у москвичей перед отечественной наукой.
Собственно, чем должен заниматься новый отдел, для его заведующего не представлялось проблемой, — световыми квантами. Проблема была в том, как именно заниматься; как вести исследования, чтобы подтвердить или опровергнуть теорию прерывности света.
В принципе дело сводилось к постановке правильных и убедительных опытов. Хорошо придуманный и точно осуществленный эксперимент никогда и никого еще не обманывал (если только исследователь не пытался распространить полученные результаты на области, к которым данный опыт не имеет отношения). Опыт — последняя инстанция для тех, кто ищет истины.
Однако оказалось, что придумать хороший опыт для проверки квантовой теории — дело чрезвычайно сложное. Надо было найти такие следствия из «зернистой» структуры света, которые допускают их непосредственную практическую проверку.
Перелистывая же журналы и слушая научные доклады, Сергей Иванович все больше убеждался в том, что такой непосредственной проверки квантовой теории, пожалуй, никто еще не делал. Соображения в защиту правильности новых представлений основывались лишь на косвенных данных опыта. Но ведь при этом могло быть что-нибудь упущено.
Не сразу и не легко пришли верные идеи. Вспышки вдохновения озаряли долгий и кропотливый будничный труд. Но когда схема опыта, которую искали, созрела и четко обозначилась в сознании, оптик знал, что она верна. Товарищи, с которыми он поделился, согласились с его уверенностью.
В качестве «лакмусовой бумажки» для проверки наличия в световых потоках квантов Вавилов выбрал одну физическую величину: коэффициент поглощения света. Эта величина представляет собою отношение количества поглощенного света к интенсивности (яркости) падающего света и хорошо известна в оптике.
С незапамятных времен считалось, что коэффициент поглощения — постоянная величина, что он не зависит от силы света. Пропустите сквозь окрашенную пленку (например, через желатин) пучок света и измерьте, на какую долю яркости свет ослабел при этом. После этого увеличьте яркость первичного пучка. Если хотите, наоборот, уменьшите ее во много раз. Естественно, что вторичный пучок, то есть луч, прошедший через пленку, соответственно усилится или ослабится. Доля же ослабления останется той же самой: коэффициент поглощения не изменится от ваших манипуляций.
Таков простой и ясный смысл знаменитого закона Бугера, установленного на опыте еще в 1729 году и с тех пор многократно подтвержденного.
Вавилов с огромным уважением относился к исследователю, сформулировавшему этот закон, и говорил, что в своей области П. Бугер «является такой же замечательной фигурой, как Кеплер или Ньютон. Бугер впервые ввел количественное измерение света».
Исходя из безупречности основного закона абсорбции (поглощения) света, Сергей Иванович разработал принципы проверки опытом квантовой гипотезы.
Безупречный там, где его устанавливали, то есть в обычных условиях практики, в условиях, где световые кванты себя не проявляют (и, значит, можно не обращать на них внимания, даже если свет дискретен), закон Бугера, однако, должен нарушаться в каких-то специальных случаях, где квантовая структура света дает о себе знать.
Что же это за специальные случаи?
Соображения теории подсказывают, что коэффициент абсорбции должен утратить постоянство (а закон Бугера — свою силу) в двух крайних случаях: когда интенсивность падающего света исчезающе мала и, наоборот, когда она чрезмерна.
В первом случае роковую роль для закона Бугера играют флуктуации — отклонения от средних значений в обе стороны — числа фотонов в световом потоке.
Дело в том, что если свет — поток фотонов, то в высшей степени беспорядочно движущихся фотонов. Объясняется это, с одной стороны, «классическими» причинами, то есть процессами, рассматриваемыми в классической физике, с другой стороны — квантовыми причинами, связанными с тонким механизмом рождения и исчезновения квантов в молекулах.
Первые из них просты и очевидны. Обычный источник света состоит из множества излучающих движущихся частиц, взаимодействующих одна с другой, соударяющихся, получающих новые импульсы к излучению или, наоборот, прекращающих излучать при ударах. Естественно, что, испускаемые хаотически метущимися молекулами и атомами, фотоны не могут двигаться так, чтобы через какую-нибудь точку пространства их пролетало за единицу времени строго неизменное число.
Беспорядок по вине таких «классических» причин усиливается за счет непрерывного поглощения фотонов молекулами и атомами (что вызывает, как говорят, возбуждение частиц материи) и последующего спонтанного, то есть самопроизвольного, испускания квантов света этими частицами материи (с утратой возбуждения — с переходом в нормальное, невозбужденное состояние).
В повседневной жизни мы имеем дело главным образом с плотными, насыщенными световыми потоками. Фотонов а них так много, что, как показывает статистическая физика, отклонения их числа от среднего значения практически незаметны: мы не обнаруживаем «мигания» обычных источников света (если только оно не вызвано неравномерным питанием энергией).
Совсем иное, в принципе, должно наблюдаться при ничтожных световых потоках. Если свет излучается, как фотоны, то в этом случае количество падающих квантов в каждый данный момент времени не будет одинаково: оно будет испытывать статистические колебания вокруг среднего значения. Это же приведет к тому, что для каждого отдельного промежутка времени количество света, поглощаемого веществом, будет разным. Разным будет и коэффициент поглощения, рассчитанный на средний падающий поток: он станет колебаться в обе стороны от среднего значения.
(adsbygoogle = window.adsbygoogle || []).push({});- Белые призраки Арктики - Валентин Аккуратов - Биографии и Мемуары
- И.П.Павлов PRO ET CONTRA - Иван Павлов - Биографии и Мемуары
- 10 гениев науки - Александр Фомин - Биографии и Мемуары
- Ньютон - Владимир Карцев - Биографии и Мемуары
- Владимир Ленин. Выбор пути: Биография. - Владлен Терентьевич Логинов - Биографии и Мемуары / История
- Танковые сражения 1939-1945 гг. - Фридрих Вильгельм Меллентин - Биографии и Мемуары
- Легенды первых лиц СССР - Алексей Богомолов - Биографии и Мемуары
- Сеченов - Миньона Яновская - Биографии и Мемуары
- Дневники полярного капитана - Роберт Фалкон Скотт - Биографии и Мемуары
- Вопросы жизни Дневник старого врача - Николай Пирогов - Биографии и Мемуары