Шрифт:
Интервал:
Закладка:
Доказательство Х. т. н. было получено в 1913 американским генетиком К. Бриджесом, открывшим нерасхождение хромосом в процессе мейоза у самок дрозофилы и отметившим, что нарушение в распределении половых хромосом сопровождается изменениями в наследовании признаков, сцепленных с полом.
С развитием Х. т. н. было установлено, что гены, расположенные в одной хромосоме, составляют одну группу сцепления (см. Сцепление генов ) и должны наследоваться совместно; число групп сцепления равно числу пар хромосом, постоянному для каждого вида организмов (см. Кариотип ); признаки, зависящие от сцепленных генов, также наследуются совместно. Вследствие этого закон независимого комбинирования признаков (см. Менделя законы ) должен иметь ограниченное применение; независимо должны наследоваться признаки, гены которых расположены в разных (негомологичных) хромосомах. Явление неполного сцепления генов (когда наряду с родительскими сочетаниями признаков в потомстве от скрещиваний обнаруживаются и новые, рекомбинантные, их сочетания) было подробно исследовано Морганом и его сотрудниками (А. Г. Стёртевантом и др.) и послужило обоснованием линейного расположения генов в хромосомах. Морган предположил, что сцепленные гены гомологичных хромосом, находящиеся у родителей в сочетаниях и , в мейозе у гетерозиготной формы ® могут меняться местами, в результате чего наряду с гаметами АВ и ab образуются гаметы Ab и аВ. Подобные перекомбинации происходят благодаря разрывам гомологичных хромосом на участке между генами и последующему соединению разорванных концов в новом сочетании: Реальность этого процесса, названного перекрестом хромосом, или кроссинговером , была доказана в 1933 нем, учёным К. Штерномв опытах с дрозофилой и американскими учёными Х. Крейтономи Б. Мак-Клинток — с кукурузой. Чем дальше друг от друга расположены сцепленные гены, тем больше вероятность кроссинговера между ними. Зависимость частоты кроссинговера от расстояний между сцепленными генами была использована для построения генетических карт хромосом . В 30-х гг. 20 в. Ф. Добржанский показал, что порядок размещения генов на генетических и цитологических картах хромосом совпадает.
Согласно представлениям школы Моргана, гены являются дискретными и далее неделимыми носителями наследственной информации. Однако открытие в 1925 советскими учёными Г. А. Надсоном и Г. С. Филипповым, а в 1927 американским учёным Г. Мёллером влияния рентгеновских лучей на возникновение наследственных изменений (мутаций ) у дрозофилы, а также применение рентгеновских лучей для ускорения мутационного процесса у дрозофилы позволили советским учёным А. С. Серебровскому, Н. П. Дубинину и др. сформулировать в 1928—30 представления о делимости гена на более мелкие единицы, расположенные в линейной последовательности и способные к мутационным изменениям. В 1957 эти представления были доказаны работой американского учёного С. Бензера с бактериофагом Т4. Использование рентгеновских лучей для стимулирования хромосомных перестроек позволило Н. П. Дубинину и Б. Н. Сидорову обнаружить в 1934 эффект положения гена (открытый в 1925 Стёртевантом), т. е. зависимость проявления гена от места расположения его на хромосоме. Возникло представление о единстве дискретности и непрерывности в строении хромосомы.
Х. т. н. развивается в направлении углубления знаний об универсальных носителях наследственной информации — молекулах дезоксирибонуклеиновой кислоты (ДНК). Установлено, что непрерывная последовательность пуриновых и пиримидиновых оснований вдоль цепи ДНК образует гены, межгенные интервалы, знаки начала и конца считывания информации в пределах гена; определяет наследственный характер синтеза специфических белков клетки и, следовательно, наследственный характер обмена веществ. ДНК составляет материальную основу группы сцепления у бактерий и многих вирусов (у некоторых вирусов носителем наследственной информации является рибонуклеиновая кислота ); молекулы ДНК, входящие в состав митохондрий , пластид и др. органоидов клетки, служат материальными носителями цитоплазматической наследственности.
Х. т. н., объясняя закономерности наследования признаков у животных и растительных организмов, играет важную роль в с.-х. науке и практике. Она вооружает селекционеров методами выведения пород животных и сортов растений с заданными свойствами. Некоторые положения Х. т. н. позволяют более рационально вести с.-х. производство. Так, явление сцепленного с полом наследования ряда признаков у с.-х. животных позволило до изобретения методов искусственного регулирования пола у тутового шелкопряда выбраковывать коконы менее продуктивного пола, до разработки способа разделения цыплят по полу исследованием клоаки — отбраковывать петушков и т.п. Важнейшее значение для повышения урожайности многих с.-х. культур имеет использование полиплоидии . На знании закономерностей хромосомных перестроек основывается изучение наследственных заболеваний человека.
Лит.: Морган Т. Г., Структурные основы наследственности, пер. с англ., М.—П., 1924; его же, Избранные работы по генетике, пер, с англ., М.—Л., 1937; Актуальные вопросы современной генетики, М., 1966; Лобашев М. Е., Генетика, 2 изд., Л., 1967; Классики советской генетики. [Сб. ст.], Л., 1968.
С. Г. Инге-Вечтомов.
Рис. к ст. Хромосомная теория наследственности.
Хромосомные болезни
Хромосо'мные боле'зни, наследственные заболевания, обусловленные изменением числа или структуры хромосом . Частота Х. б. среди новорождённых детей около 1%. Многие изменения хромосом несовместимы с жизнью и являются частой причиной спонтанных абортов и мертворождений. При спонтанных абортах обнаружено около 20% эмбрионов с аномальными кариотипами (хромосомными наборами). Изменение числа хромосом происходит в результате нерасхождения их в мейозе или при делении клеток на ранней стадии развития оплодотворённого яйца (см. Митоз ). Нерасхождению хромосом при первых делениях оплодотворённого яйца способствует, например, высокий возраст матери. Хромосомные аберрации обусловливаются физическими (ионизирующее излучение) и химическими (например, лекарственные препараты с мутагенным эффектом) факторами; вирусами (краснухи, вирусного гепатита, ветряной оспы и др.), антителами и различными расстройствами метаболизма.
Х. б. могут быть связаны с излишком генетического материала (полисемия — наличие одной или нескольких добавочных хромосом; полиплоидия ; дупликация ); с утратой части генетического материала (нуллисомия , моносомия , делеция ); с хромосомными перестройками (транслокация ; различные перестановки участков хромосом). Различают также группы Х. б., обусловленных изменениями половых и неполовых хромосом. Наиболее распространённые аномалии первой группы у женщин — синдром Шерешевского — Тернера (моносомия Х) и синдром трисомии Х; у мужчин — синдром Клайнфельтера, характеризующийся наличием лишней Х-хромосомы. При синдромах Шерешевского — Тернера и Клайнфельтера возникают задержка полового развития и бесплодие; при синдроме трисомии Х — некоторое снижение интеллекта, расстройства менструального цикла. Частота аномалий по половым хромосомам у мертворождённых составляет 2,7%, что в 25 раз выше, чем среди новорождённых.
Среди аутосомных аномалий с нарушением числа хромосом выделяются трисомные синдромы: синдром трисомии хромосом группы D (13—15-е пары), или синдром Патау, встречающийся с частотой 1: 4000 новорождённых; синдром трисомии хромосом группы Е (18-я пара) — Эдвардса, с частотой 1: 300 и Дауна болезнь (трисомия по 21-й хромосоме), частота которой 1: 700 новорождённых. Указанные Х. б. проявляются различными уродствами; задержкой физического и умственного развития; пороками развития внутренних органов. Отмечается специфическое сочетание отдельных аномалий в различных случаях трисомии. Подобные больные живут, как правило, недолго, погибают от вторичных инфекций. Тяжесть клинической картины при синдромах, вызванных структурными изменениями хромосом, как правило, коррелирует с количеством избыточного или недостающего хромосомного материала. Специфика патологических проявлений зависит от того, какая хромосома вовлечена в процесс перестройки. Чаще отмечаются задержка умственного и физического развития, мышечная гипотония, аномалии лицевого скелета. пороки развития внутренних органов. Наряду с типичными Х. б. описано большое количество (около 200) синдромов, вызванных сложными типами хромосомных аберраций.
- Большая Советская Энциклопедия (НЮ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (УК) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (СА) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ИВ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ИГ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (НУ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (БЫ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ХУ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (БХ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ДЬ) - БСЭ БСЭ - Энциклопедии