Рейтинговые книги
Читем онлайн Большая Советская Энциклопедия (ЛЮ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 20 21 22 23 24 25 26 27 28 ... 32

  Способность к Л. обнаруживают различные вещества (см. Люминофоры). Чтобы вещество было способно люминесцировать, его спектры должны носить дискретный характер, то есть его уровни должны быть разделены зонами запрещенных энергий. Поэтому металлы в твёрдой и жидкой фазе, обладающие непрерывным энергетическим спектром, не дают Л.: энергия возбуждения в металлах непрерывным образом переходит в тепло.

  Вторым необходимым условием Л. является превышение вероятности излучательных переходов над вероятностью безызлучательных. Повышение вероятности безызлучательных переходов влечёт за собой тушение Л. Вероятность безызлучательных переходов зависит от многих факторов, например возрастает при повышении температуры (температурное тушение), концентрации люминесцирующих молекул (концентрационное тушение) или примесей (примесное тушение). Такое тушение Л. связано с передачей энергии возбуждения молекулам тушителя или её потерей при взаимодействии люминесцирующих молекул между собой и с тепловыми колебаниями среды. Следовательно, способность к Л. зависит как от природы люминесцирующего вещества и его фазового состояния, так и от внешних условий. При низком давлении люминесцируют пары металлов и благородные газы (это явление применяется в газоразрядных источниках света, люминесцентных лампах и газовых лазерах). Л. жидких сред в основном характерна для растворов органических веществ.

  Яркость Л. кристаллов зависит от наличия в них примесей (так называемых активаторов), энергетические уровни которых могут служить уровнями поглощения, промежуточными или излучательными уровнями. Роль этих уровней могут выполнять также энергетические зоны (валентная и проводимости). Кристаллы, обладающие Л., называются кристаллофосфорами.

  В кристаллофосфорах возбуждение светом, электрическим током или пучком частиц создаёт свободные электроны, дырки и эксптоны (рис. 3). Электроны могут мигрировать по решётке, оседая на ловушках 4. Л., происходящая при рекомбинации свободных электронов с дырками, называется межзонной (а). Если рекомбинирует электрон с дыркой, захваченной центром свечения (атомом примеси или дефектом решётки), происходит Л. центра (б). Рекомбинация экситонов даёт экситонную Л. (в). Спектр Л. кристаллофосфоров состоит из межзонной, экситонной и примесной полос.

  Основные физические характеристики Л.: способ возбуждения (для фотолюминесценции — спектр возбуждения); спектр излучения (изучение спектров излучения Л. составляет часть спектроскопии); состояние поляризации излучения; выход излучения, то есть отношение поглощённой энергии к излученной (для фотолюминесценции вводится понятие квантового выхода Л. — отношения числа излученных квантов к числу поглощённых). Поляризация Л. связана с ориентацией и мультипольностью излучающих и поглощающих атомных систем.

  Кинетика Л., то есть зависимость свечения от времени, интенсивности излучения I, от интенсивности возбуждения, а также зависимость Л. от различных факторов (например, температуры) служит важной характеристикой Л. Кинетика Л. в сильной степени зависит от элементарного процесса. Кинетика затухания резонансной Л. при малой плотности возбуждения и малой концентрации возбуждённых атомов носит экспоненциальный характер: I = l0 е-t/t, где t характеризует время жизни на уровне возбуждения и равно обратной величине вероятности спонтанного перехода в единицу времени (см. Квантовые переходы, Эйнштейна коэффициенты), t — длительность свечения. При большой плотности возбуждения наблюдается отклонение от экспоненциального закона затухания, вызванное процессами вынужденного излучения. Квантовый выход резонансной Л. обычно близок к 1. Кинетика затухания спонтанной Л. также обычно носит экспоненциальный характер. Кинетика рекомбинационной Л. сложна и определяется вероятностями рекомбинации, захвата и освобождения электронов ловушками, зависящими от температуры. Наиболее часто встречается гиперболический закон затухания: I = I0 / (1 + pt)a (р — постоянная величина, a обычно принимает значение от 1 до 2). Время затухания Л. изменяется в широких пределах — от 10-8 сек до нескольких часов. Если происходят процессы тушения, то сокращаются выход Л. и время её затухания. Исследование кинетики тушения Л. даёт важные сведения о процессах взаимодействия молекул и миграции энергии.

  Изучение спектра, кинетики и поляризации излучения Л. позволяет исследовать спектр энергетического состояния вещества, пространственную структуру молекул, процессы миграции энергии. Для исследования Л. применяются приборы, регистрирующие свечение и его распределение по спектру, — спектрофотометры. Для измерения времён затухания применяются тауметры и флуорометры. Люминесцентные методы являются одними из наиболее важных в физике твёрдого тела. Л. некоторых веществ лежит в основе действия лазеров. Л. ряда биологических объектов позволила получить информацию о процессах, происходящих в клетках на молекулярном уровне (см. Биолюминесценция). Для исследования кристаллофосфоров весьма плодотворно параллельное изучение их Л. и проводимости. Широкое исследование Л. обусловлено также важностью её практических применений. Яркость Л. и её высокий энергетический выход позволили создать люминесцентные источники света с высоким кпд, основанные на электролюминесценции и фотолюминесценции (см. Люминесцентная лампа). Яркая Л. ряда веществ обусловила развитие метода обнаружения малых количеств примесей, сортировки веществ по их люминесцентным признакам и изучение смесей, например нефти (см. Люминесцентный анализ). Катодолюминесценция лежит в основе свечения экранов электронных приборов (осциллографов, телевизоров, локаторов и так далее), в рентгеноскопии используется рентгенолюминесценция. Для ядерной физики очень важным оказалось использование радиолюминесценции (см. Люминесцентная камера, Сцинтилляционный счётчик). Л. широко применяется для киносъёмки и в дефектоскопии (см. Люминесцентная киносъёмка, Дефектоскопия). Люминесцентными красками окрашивают ткани, дорожные знаки и так далее.

Лит.: Прингсгейм П., Флуоресценция и фосфоресценция, перевод с английского, М., 1951; Вавилов С. И., Собрание сочинений, т, 2, М., 1952, с. 20, 28, 29; Левшин В. Л., Фотолюминесценция жидких и твердых веществ, М. — Л., 1951; Антонов-Романовский В. В., Кинетика фотолюминесценции кристаллофосфоров, М., 1966; Адирович Э. И., Некоторые вопросы теории люминесценции кристаллов, М. — Л., 1951; Фок М. В., Введение в кинетику люминесценции кристаллофосфоров, М., 1964; Кюри Д., Люминесценция кристаллов, перевод с французского, М., 1961; Бьюб Р., Фотопроводимость твердых тел, перевод с английского, М., 1962.

  Э. А. Свириденков.

Рис. 1. Схема квантовых переходов при элементарном процессе люминесценции: 1 — основной энергетический уровень; 2 — уровень излучения; 3 — уровень возбуждения. Переход 3—1, показанный пунктирной стрелкой, соответствует резонансной люминесценции, переход 2—1 — спонтанной люминесценции.

Рис. 2. Схема квантовых переходов при метастабильной (стимулированной) люминесценции. Для перехода с метастабильного уровня 4 на излучающий уровень 2 атом должен поглотить дополнительную энергию; 1 — основной уровень; 3 — уровень возбуждения.

Рис. 3. Схема энергетических переходов при люминесценции кристаллофосфоров: 1 — валентная зона, 3 — зона проводимости. Переход 1—3 соответствует поглощению энергии, переходы 3—4 и 4—3 — захвату и освобождению электрона метастабильным уровнем (ловушкой 4). Переход (а) соответствует межзонной люминесценции, (б) — люминесценции центра, (в) — экситонной люминесценции (2 — уровень энергии экситона).

Люминофоры

Люминофо'ры (от латинского lumen — свет и греческого phoros — несущий), твёрдые и жидкие вещества, способные люминесцировать под действием различного рода возбуждений (см. Люминесценция). По типу возбуждения различают фотолюминофоры, рентгенолюминофоры, радиолюминофоры, катодолюминофоры, электролюминофоры. Некоторые Л. могут выступать в качестве Л. смешанных типов (например, ZnS·Cu является фото-, катодо- и электролюминофором). По химической природе различают органические Л. — органолюминофоры, и неорганические — фосфоры. Фосфоры, имеющие кристаллическую структуру, называются кристаллофосфорами.

  Свечение Л. может быть обусловлено как свойствами основного вещества, так и наличием примеси — активатора. Активатор образует в основном веществе (основании) центры свечения. Название активированных Л. складывается из названия основания и названия активаторов, например: ZnS·Cu, Co обозначает Л. ZnS, активированный Cu и Со. Если основание смешанное, то перечисляют сначала названия оснований, а затем активаторов (например, ZnS, CdS·Cu, Со).

1 ... 20 21 22 23 24 25 26 27 28 ... 32
На этой странице вы можете бесплатно читать книгу Большая Советская Энциклопедия (ЛЮ) - БСЭ БСЭ бесплатно.

Оставить комментарий