Рейтинговые книги
Читем онлайн Клеймо создателя - Феликс Филатов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 21 22 23 24 25 26 27 28 29 ... 50

Результатом комплементарности пар оснований является первое правило Чаргаффа: число гуанинов (G) в двуцепочечной ДНК равно числу цитозинов (С), а число аденинов (А) равно числу тиминов (Т). Это правило стало одним из краеугольных камней открытия спиральной структуры этой молекулы, о чем можно прочитать в любом учебнике.

Позднее мы коротко коснемся и так называемого второго правила Чаргаффа, которое относится только к одной природной полинуклеотидной цепи. Существуют и некомплементарные взаимодействия пар оснований – «качающиеся» и хугстеновские (см. ниже). В природе все намного интереснее и богаче, чем в любом учебнике. Мы не можем обусловить начало жизни только формированием генетического кода (тогда ее дефиниция оказалась бы не слишком трудной задачей и упомянутое выше следствие теоремы Гѐделя удалось бы обойти), какие-то свойства жизни мы различаем и до этого события, но беспрецедентная универсальность кода – при физико-химической произвольности – делает его едва ли не главной меткой нуклеиново-белковой жизни. И далее мы будем говорить именно о генетическом коде.

Глава 11.

Механика генетического кодирования (XI)

Об этом можно прочитать в любом учебнике. И все же – чтобы облегчить понимание последующих рассуждений – позволим себе очень коротко остановиться на работе машины кодирования. Барбьери связывает формирование таких машин с возникновением молекул, названных им codemakers – термин, который мы выше перевели как декодеры.

Что это за молекулы? В тех случаях, когда генетическую информацию содержит ДНК (другие варианты мы не рассматриваем, поскольку они принципиально не отличаются от общей схемы), первой такой молекулой становится информационная или матричная РНК (иРНК или мРНК) – комплементарная копия отрезка той нити ДНК (минус—нити или Nonsense, N, «бессмысленной»), которая, в свою очередь, в двойной цепи комплементарна кодирующей, «смысловой» (Sense, S, то есть, содержащей ген) или плюс-нити. Между прочим, двунитевую структуру ДНК обозначают иногда не только как NS, но также – соответственно – как WC, чтобы подчеркнуть совпадающими порядками букв парадоксальный ум Джеймса Уотсона, не всеми с порога принимаемый и понимаемый. мРНК, как правило, содержит копию гена, которая, как правило же, начинается с триплета AUG, кодирующего аминокислоту метионин М. Этот триплет называется старт-кодоном или кодоном инициации. Транскрибируемый фрагмент ДНК заканчивается сразу перед одним из кодонов терминации (стоп-кодоном). Детали матричного синтеза мРНК или транскрипции (промоторные зоны плюс-цепи ДНК, работу и характер РНК-полимераз и проч.) и детали строения самой мРНК (например, наличие и вариации поли-А сигнала и проч.) большого значения для нас здесь не имеют. У эукариот трансляции, то есть, переводу генетической информации в полипептид, предшествует так называемый процессинг мРНК, в ходе которого из тела этой молекулы вырезаются некодирующие сегменты, интроны, а оставшиеся сегменты, экзоны, формируют кодирующий полинуклеотид. У прокариот интронов нет, их мРНК практически готова к трансляции сразу после синтеза. Дальнейшие события реализации генетической информации, то есть, синтеза полипептида, кодированного в полинуклеотиде, описываются в учебниках примерно так, как коротко изложено ниже.

После транскрибирования мРНК не остается комплементарно связанной с ДНК-шаблоном; она освобождается от ДНК, которая затем восстанавливает свою двойную структуру. В одной эукаритической клетке количество молекул мРНК может составлять свыше 10.000. Наряду с молекулами мРНК на ДНК образуются и другие транскрипты, в том числе молекулы рибосомной и транспортных РНК, которые также имеют важное значение в реализации генетической информации. Все эти РНК называют еще ядерными. Наиболее обильными РНК в клетках всех видов являются молекулы рибосомной РНК (рРНК), которые выполняют роль структурных компонентов рибосом. У эукариот синтез рРНК контролируется огромным количеством генов (сотни и тысячи копий) и происходит в ядрышке. Не похоже, что структура рРНК имеет серьезное значение для обсуждаемой далее формальной организации генетического кодирования, и мы не станем на ней останавливаться. Совершенно другую роль в этих процессах имеют встречающиеся в клетке в несколько меньших количествах молекулы транспортных РНК (тРНК), которые участвуют в декодировании информации, трансляции. Это те самые декодеры или молекулы-посредники (codemakers Барбьери), – которые обусловливают специфическую связь между хранилищем генетической информации, нуклеиновыми кислотами, и строительным материалом, служащим для ее реализации, то есть для конструирования пептидов – аминокислотами.

Роль транспортных РНК в синтезе белка была постулирована еще до их открытия. В 1955г. Крик приписал им функцию адаптера, который может нести аминокислоту и образовывать водородные связи с кодирующей полинуклеотидной матрицей. Гипотеза адаптера оказалась необходимой в связи с упоминавшейся уже невозможностью обнаружить между аминокислотами и нуклеиновыми кислотами стереохимическое соответствие, достаточное для того, чтобы обеспечить считывание генетического кода. В 1957г. в лаборатории Мэлона Хогланда было показано, что в ходе белкового синтеза активированные аминокислоты переносятся на особый тип РНК, получивший тогда наименование растворимой РНК и называемой теперь транспортной.

Стереохимия тРНК хорошо изучена и весьма характерна. Мы остановимся на ней поподробнее. Типичная молекула тРНК – это полинуклеотидная цепь длиной 75—90 (по преимуществу, 76) нуклеотидов. Молекулярные массы тРНК лежат в пределах 17.000—35.000. Часть оснований нуклеотидных пар, уже после синтеза тРНК, в определенных положениях модифицирована, это неканонические, редкие, так называемые (минорные), составляющие до 10% от общего числа. Среди них – дигидроуридин (D), псевдоуридин (Ψ) и инозин (I); последний играет существенную роль в узнавании кодона. В дополнение к этим модификациям несколько нуклеозидов метилированы. Все эти модификации – результат посттранскрипционного процессинга тРНК, которая копируется с «нормальной» матрицы. В 75% случаев молекулы тРНК открываются5′-гуанином (он фосфорилирован) и во всех случаях завершается триплетом ССА-3′.

Вторичная структура этой молекулы сформирована четырьмя короткими двуцепочечными стеблями и напоминает клеверный лист.

Каждый из четырех стеблей состоит из 4—7 уотсон-криковских пар, образующих двойные спирали. Сами стебли носят названия акцепторного, антикодонного, а также D (содержащий дигидроуридин) и T (содержащий риботимидин). Некоторые нуклеотиды консервативны, и их позиции в составе тРНК остаются инвариантными – либо полуинвариантными, если сохраняется их пуриновая или пиримидиновая природа. На акцепторном стебле тРНК имеется участок связывания с аминокислотой; он неспецифичен и для всех аминокислот один и тот же: ССА-3». Противоположный стебель содержит одноцепочечную петлю с антикодоном, распознающим кодон на мРНК. Две другие, боковые, петли предназначены для связывания с рибосомой и с аминоацил-тРНКсинтетазой (АРСазой). Четвертая, не всегда выраженная, петля так и называется – дополнительная или вариабельная (V). У тРНК, узнаваемых АРСазами класса I, она, как правило, короче (4—5 нуклеотидов), у тРНК, узнаваемых АРСазами класса II – длиннее (13—21 нуклеотидов).

Третичная (пространственная) структура любой тРНК складывает все ее четыре ветви (стебли с петлями) в так называемую Г-форму (L-форму, если использовать латиницу):

Г-форма состоит из двух почти перпендикулярных друг другу спиралей А-РНК (11 пар оснований на виток). Два отрезка буквы Г образованы ССА-3`-концом и антикодонной петлей, которые находятся на расстоянии 80Å друг от друга. Наружный край угла буквы Г образован Т-петлей. Акцепторный и Т-стебли уложены один вслед за другим и образуют единую двойную спираль. В примерно такую же структуру (только с расхождением осей на 26°) уложены антикодонный и D-стебли. Эта структура на предыдущем рисунке обозначена жирной черной кривой.

Уже цитированный Др. Зенгер назвал тРНК «сокровищницей стереохимической информации». Он отмечает, что кроме уотсон-криковских пар, ответственных за большую часть горизонтальных взаимодействий между основаниями (особенно в стеблях), в тРНК имеется ряд нестандартных пар и триплетов. Такие пары располагаются в основном с наружной стороны угла и в шарнирной области буквы Г.

1 ... 21 22 23 24 25 26 27 28 29 ... 50
На этой странице вы можете бесплатно читать книгу Клеймо создателя - Феликс Филатов бесплатно.
Похожие на Клеймо создателя - Феликс Филатов книги

Оставить комментарий