Рейтинговые книги
Читем онлайн Когда ты была рыбкой, головастиком - я... - Мартин Гарднер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 26 27 28 29 30 31 ... 55

Бесконечное количество других вариантов получим, если положим в основу этого парадокса другие ряды Фибоначчи. Так, квадраты, построенные на основе ряда 2, 4, 6, 10, 16, 26…, дают прибавку или потерю в 4 квадратные единицы. Величину этой прибавки-потери легко можно вычислить: это разность между квадратом любого элемента последовательности и произведением соседних с ним элементов. Ряд 3, 4, 7, 11, 18… дает прибавку или потерю в 5 квадратных единиц. Т. де Молидар [58]в своей «Grande Encyclopedie des Jeux» [59]изображает квадрат, основанный на ряде 1, 4, 5, 9, 14… Длина стороны квадрата равна 9, a при превращении в прямоугольник он теряет и квадратных единиц. Ряд 2, 5, 7, 12, 19… также дает потери и прибавки, равные 11. Однако в обоих случаях перекрывание («добавочная площадь») вдоль диагонали прямоугольника достаточно велико, и его можно заметить. Пусть А, В и С — три последовательных члена какого-нибудь ряда Фибоначчи, а X — потеря или прибавка площади. Тогда получим две следующие формулы:

А + В = С

В 2= АС ± X

Можно заменить X любой потерей или прибавкой, которую мы хотим получить, а вместо В подставить любую длину квадрата, которая нам нравится. Затем можно составить квадратные уравнения, а решив их, узнать два других элемента нашего ряда Фибоначчи, хотя, конечно, это не обязательно будут рациональные числа. Поэтому, к примеру, невозможно получить потери или прибавки в 2 или 3 квадратные единицы, деля квадрат на куски с рациональными длинами. Но если длины составят иррациональные числа, то, конечно, результата достичь удастся. Таким образом, ряд Фибоначчи √2, 2√2, 3√2, 5√2… даст прибавку или потерю, равную 2, а ряд √3, 2√3, 3√3, 5√3… даст прибавку или потерю в 3 квадратные единицы.

Доктор Матрикс великодушно сослался в своей лекции на главы 8 и 9 моей книги, вышедшей в мягкой обложке и называющейся «Математика, магия и мистика» (издательство «Dover») [60]. Эти главы посвящены всевозможным удивительным геометрическим исчезновениям, в том числе таинственной пропаже лиц и людей! Там описано, в частности, блистательное открытие мага-любителя Пола Карри: путем простой перестановки кусков некой фигуры получается фигура, казалось бы, той же площади, но с большой дырой внутри!

Доктор завершил свой доклад кратким рассказом о числах трибоначчи.Ряд трибоначчи получают, всякий раз суммируя трипредыдущих члена: 1, 1, 2, 4, 7, 13, 24, 44, 81… В обобщенной последовательности Фибоначчи отношение соседних членов А и В (т. е. результат деления А на В) стремится к 0,618… — величине, обратной прославленному «золотому сечению». В последовательности трибоначчи такое отношение стремится к 0,543… Числа тетраначчиполучают путем суммирования четырех предшествующих элементов ряда. Разумеется, можно обобщить этот случай, приняв за nколичество суммируемых элементов. Тогда при стремлении nкбесконечности отношение соседних членов будет по мере увеличения их номеров стремиться к 0,5.

Как я позже узнал от Дональда Кнута, известного ученого-компьютерщика из Стэнфордского университета, подобные ряды впервые были предложены Нараяной Пандитой в 1356 году, в главе 13 его замечательной работы, написанной на санскрите и озаглавленной «Ганита каумуди» («Услады лотосовых вычислений») [61]. Кнут обсуждает ее и дает ссылки на другие работы в четвертом томе своего классического труда «Искусство компьютерного программирования» [62]. Позже эту последовательность заново открыл» четырнадцатилетний Марк Фейнберг. Он написал об этом в «Fibonacci Quarterly» [63]. В 1967 году Марк, уже второкурсник Пенсильванского университета, разбился на мотоцикле.

Доктор Матрикс, когда мы обедали с ним и с Дональдом Кнутом, сообщил нам еще об одной неправдоподобной диковинке, не связанной с числами Фибоначчи. Расположите десять цифр в алфавитномпорядке, и они образуют случайное и весьма скучное с виду число 8 549 176 320. Разделите его на 5. Получится 1 709 835 264 — еще одно десятизначное число, где представлены все десять цифр! Разделите и его на 5. Получится 341 967 052,8 — третье число, где каждая из десяти цифр встречается по одному разу [64]!

Теперь разделим это число на 4. Окажется, что вы снова вернулись к самому первому — «алфавитному» — числу, только в нем теперь появилась десятичная запятая. Понимаете, отчего это произошло? Дважды разделив на 5 и один раз на 4, вы тем самым разделили первое число на 100 [65].

Я послал эту диковинку, обнаруженную доктором Матриксом, своему другу Оуэну О'Ши, который родом из ирландского города Cobh (произносится «Коув»). Он — автор недавно вышедших «Магических чисел Профессора» [66]. В ответ Оуэн написал мне о множестве других удивительных свойств этого якобы «неинтересного» алфавитного числа. Например, оно раскладывается по степеням простых чисел как произведение 210, 33,5 и 61843. Это означает, что 8 549 176 320 без остатка делится на все числа от 1 до 9, исключая 7. Множитель 61 843 (тоже простое число) возникает довольно неожиданно.

О'Ши двумя способами делит число 8 549 176 320 по разрядам, получив следующее уравнение:

854 + 917 + 632 + 0 = 8 · 5 · 49 + (1 · 7 · 63) + 2 + 0

Каждая часть равна 2403.

Затем О'Ши составил число, воспользовавшись обратным алфавитным порядком, и получил 0 236 719 458. Представив разряды этого числа в виде слагаемых: 0 + 2367 + 19 + 4 + 5 + 8, — он снова пришел к сумме 2403.

Два американских математика, Джеймс Смоук и Томас Дж. Ослер, в своей книге «Волшебный трюк Фибоначчи» [67]сообщают еще об одном удивительном фокусе. Возьмем дробь 100/89. В десятичном виде она равна 1,123 595 505 61… Первые пять цифр в ней — это первые пять чисел Фибоначчи [68].

Добавьте два нуля в числитель и по девятке в начало и конец знаменателя, и у вас получится дробь 10000/9899, то есть

1,0102030508132134559046368…

Заметьте: первая единица, а затем девять следующих парцифр представляют собой десять первых чисел в ряду Фибоначчи!

Авторы приводят доказательство, что если такую процедуру повторять бесконечно, то можно получить всечисла Фибоначчи из этого ряда! Каждый следующий шаг увеличивает количество получаемых чисел Фибоначчи на пять. Таким образом, если представить дробь 1000000/998999 в десятичном виде и объединить составляющие ее цифры в триады, мы увидим, что перед нами первые пятнадцатьчисел Фибоначчи; следующий шаг даст нам первые двадцать пять элементов ряда, и так до бесконечности!

Этот забавный случай рассмотрен в упражнении G43 «Конкретной математики» Грэхема, Кнута и Паташника [69], заметивших, что данное явление впервые обнаружили Брук и Уолл (дается ссылка на их статью в «Fibonacci Quarterly») [70]. Кнут сообщил мне, что похожие дроби, такие как 1000000/989899 и 1000000000/898998999, сходным образом порождают числа трибоначчи!

Полагаю, мало кто из математиков догадывается, что ряд Фибоначчи может служить основой для арифметической записи. Каждое целое положительное число можно уникальным способом выразить как сумму некоторого набора чисел Фибоначчи, не следующих одно за другим. Знаете ли вы, что двенадцатое число Фибоначчи — квадрат двенадцати, 144? Это единственное число Фибоначчи, являющееся полным квадратом, если не считать 1. А «кубы Фибоначчи» — только 1 и 8. Другие забавные подробности см. в главе 13 моего «Математического цирка» [71].

А существует ли простой способ проверить, принадлежит ли какое-нибудь число к ряду Фибоначчи? Да, такой способ есть. Целое положительное число n является числом Фибоначчи, если (и только если) 5n 2+ 4 или 5n 2— 4 представляет собой полный квадрат! Можете развлечься, проверяя какие-нибудь целые положительные числа на калькуляторе. 666 — число Фибоначчи? Нет! А 123? A 987?

И наконец — странное уравнение, объединяющее ряд Фибоначчи с последовательностью факториалов и дающее в пределе значение числа е. Подобно π, это трансцендентное число так и норовит появиться в самых неожиданных местах. Загадочную дробь мне прислал О'Ши, добавив, что нашел ее в Интернете.

Глава11

Покрытие «изуродованных» шахматных досок с помощью L-тримино

Среди современных математиков приобрела большую популярность так называемая теория покрытий. Нижеследующий текст первоначально был опубликован в «College Mathematical Journal» (май 2009).

1 ... 23 24 25 26 27 28 29 30 31 ... 55
На этой странице вы можете бесплатно читать книгу Когда ты была рыбкой, головастиком - я... - Мартин Гарднер бесплатно.
Похожие на Когда ты была рыбкой, головастиком - я... - Мартин Гарднер книги

Оставить комментарий