Рейтинговые книги
Читем онлайн Яды и противоядия - Гдаль Оксенгендлер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 24 25 26 27 28 29 30 31 32 ... 43

Токсичность цианидов для различных видов животных различна. Так, высокая резистентность к синильной кислоте отмечена у холоднокровных, в то время как многий теплокровные животные весьма к ней чувствительны. Что касается человека, то, по-видимому, он более устойчив к действию синильной кислоты, чем некоторые высшие животные. Это подтверждает, например, опыт, поставленный с большим риском для себя известным английским физиологом Баркрофтом, который в специальной камере вместе с собакой подвергался воздействию синильной кислоты в концентрации 1:6000. Опыт продолжался до тех пор, пока собака не впала в коматозное состояние и у нее не появились судороги. Экспериментатор в это время у себя не отмечал каких-либо признаков отравления. Лишь спустя 10–15 мин после извлечения из камеры погибающей собаки у него отмечалось нарушение внимания и тошнота.

Имеется немало данных, свидетельствующих об образовании цианидов в организме человека в физиологических условиях. Цианиды эндогенного происхождения обнаружены в биологических жидкостях, в выдыхаемом воздухе, в моче. Считается, что нормальный их уровень в плазме крови может достигать 140 мкг/л. В связи с этим должен быть упомянут и витамин В12 (цианокобаламин), который, как известно, является фактором роста, — необходимым организму для нормального кроветворения и функционирования нервной системы, печени и других органов. По химической структуре витамин В12 — сложное полициклическое соединение с атомом кобальта в центре молекулы к которому присоединена CN-группа.

Механизм биологического действия цианидов

Цианиды могут проникать во внутренние среды организма с отравленной пищей и водой, а также через поврежденную кожу. Очень опасно ингаляционное воздействие летучих цианидов, прежде всего синильной кислоты и хлорциана. Еще в 60-х годах XIX столетия обратили внимание на то, что венозная кровь, оттекающая от тканей и органов отравленных цианидами животных, приобретает алый, артериальный цвет. В дальнейшем было показано, что в ней содержится примерно столько же кислорода, сколько и в артериальной крови. Следовательно, под воздействием цианидов организм теряет способность усваивать кислород. Почему же это происходит?

Рис. 15. Схема процесса клеточного окисления. НАД (никотинамидадениндинуклеотид) и НАДФ (никотинамидадениндинуклео-тидфосфат) — коферменты дегидрогеназ; ФМН (флавинмононуклеотид) и ФАД (флавинадениндинуклеотид) — коферменты флавиновых ферментов; цВ, цС, цС1 цА — цитохромы; цА3 — цитохромоксидаза

Ответ на этот вопрос был получен в Германии в конце 20-х годов в работах Отто Варбурга, который установил,[165] что, проникая в кровеносное русло, цианиды очень скоро оказываются в клеточных структурах, прежде всего в митохондриях, где протекают ферментативные процессы тканевого окисления (потребления клетками кислорода). Как видно из рис. 15, первое звено этих процессов включает отщепление водорода от окисляющегося субстрата, При этом каждый атом водорода разделяется на протон и электрон. Данная часть окислительных реакций в клетках катализируется ферментами из группы дегидраз, а также так называемым флавиновым (желтым) ферментом Варбурга. Второе звено клеточного окисления состоит в переносе электронов на кислород, что делает возможным его взаимодействие с атомами активированного водорода (протонами) и приводит к образованию одного из важнейших конечных продуктов окисления — молекулы воды. Это звено окислительных реакций функционирует благодаря особой группе ферментов — цитохромам и цитохромоксидазе, содержащих атомы железа переменной валентности. Именно такое их химическое свойство является источником электронов, присоединяющихся к кислороду. Как следует из приведенной схемы, электроны последовательно переходят от одного цитохрома к другому, от них к цитохромоксидазе, а затем на кислород. По образному выражению, «цепочка цитохромов подобна цепочке баскетболистов, передающих мяч (электрон) от одного игрока к другому, неумолимо приближая его к корзине (кислороду)».[166] Этот конечный этап клеточного окисления схематично можно представить в виде следующих двух реакций:

1) 2белок — R -Fe2+ + 1/2O2 2белок — R — Fe3+ + 1/2O22-,

восстановленная окисленная

цитохромоксидаза цитохромоксидаза

2) 1/2O22- + 2H+ → H2O.

Оказалось, что синильная кислота, точнее CN-ион, вследствие особого химического сродства к трехвалентному железу избирательно (хотя и обратимо) взаимодействует с окисленными молекулами цитохромоксидазы. Тем самым тормозится течение нормального процесса тканевого дыхания.[167] Таким образом, блокируя один из железосодержащих дыхательных ферментов, цианиды вызывают парадоксальное явление: в клетках и тканях имеется избыток кислорода, а усвоить его они не могут, так как он химически неактивен. Вследствие этого в организме быстро формируется патологическое состояние, известное под названием тканевой, или гистотоксической, гипоксии, что проявляется удушьем, тяжелыми нарушениями работы сердца, судорогами, параличами. При попадании в организм несмертельных доз яда дело ограничивается металлическим вкусом во рту, покраснением кожи и слизистых оболочек, расширением зрачков, рвотой, одышкой и головной болью. С другой стороны, если животный организм адаптирован к низкому уровню кислородного обмена, то его чувствительность к цианидам резко снижается. Выдающимся русским фармакологом Н. П. Кравковым в. начале этого века был установлен любопытный факт: во время зимней спячки ежи переносят такие дозы цианида калия, которые во много раз превосходят смертельные. Стойкость ежей к цианиду Н. П. Кравков объяснял тем, что в условиях зимней спячки при низкой температуре тела потребление кислорода значительно снижено и животные лучше переносят торможение его усвоения клетками.[168] Однако не весь яд, попавший в организм, взаимодействует с дыхательными ферментами. Некоторое его количество выделяется в неизмененном виде с выдыхаемым воздухом и подвергается детоксикации с образованием в крови безвредных продуктов за счет реакций с сахарами, соединениями, содержащими серу, и кислородом. Вероятно, именно данное обстоятельство определяет отсутствие у синильной кислоты и других цианидов выраженных кумулятивных свойств. Иными словами, когда эти яды действуют в субтоксических дозах, организм справляется с ними самостоятельно, без вмешательства извне. Так, если концентрация синильной кислоты во вдыхаемом воздухе не превышает 0,01–0,02 мг/л, то она оказывается практически безопасной в течение нескольких часов. Увеличение концентрации яда только до 0,08–0,1 мг/л уже опасно для жизни из-за истощения защитных механизмов обезвреживания цианидов.

Способность CN-ионов обратимо тормозить тканевое дыхание и тем понижать уровень обменных процессов неожиданно оказалась весьма ценной для профилактики и лечения радиационных поражений. Это связано с тем, что в механизме повреждающего действия ионизирующих излучений на клеточные структуры ведущую роль играют продукты радиолиза воды (Н2О2, НО2, О, ОН и др.), которые окисляют многие макромолекулы, в том числа ферменты тканевого дыхания. Цианиды, обратимо блокируя эти ферменты, защищают их от действия этих биологически активных веществ, образующихся под влиянием радиации. Иными словами, комплекс «цианид-фермент» — становится относительно устойчивым к облучению. После лучевого воздействия он диссоциирует вследствие понижения концентрации CN-ионов в биофазе из-за обезвреживания их в крови и выделения из организма. В качестве цианидного радиозащитного средства наибольшее распространение получил амигдалин.[169] Любопытно, что еще более 40 лет назад в опытах на нескольких видах животных было установлено противолучевое (как лечебное, так и профилактическое) действие окиси углерода. Экспериментальные данные свидетельствуют, что радиозащитное значение имеет блокада окисью углерода гемоглобина, а не ингибирование ею ферментов тканевого дыхания. По-видимому, при этом сказывается общее снижение уровня кислородного обмена, что в свою очередь уменьшает образование названных кислородсодержащих радикалов. Однако на практике это свойство окиси углерода не используется, так как проявляется оно при высокой концентрации карбоксигемоглобина.

Антицианиды

Сахар и сера обезвреживают цианиды

В конце прошлого века было подмечено, что сахар способен обезвреживать цианиды. Однако это явление не подвергалось химической оценке до 1915 г., когда немецкие химики Рупп и Гольце показали, что глюкоза, соединяясь с синильной кислотой и другими цианидами, образует нетоксичное соединение — циангидрин:

1 ... 24 25 26 27 28 29 30 31 32 ... 43
На этой странице вы можете бесплатно читать книгу Яды и противоядия - Гдаль Оксенгендлер бесплатно.

Оставить комментарий