Шрифт:
Интервал:
Закладка:
В 1933 г. Энрико Ферми сделал первый важный шаг по пути построения теории этой новой силы. В предложенной Ферми теории слабая ядерная сила не действует на расстоянии, как гравитационная или электромагнитная силы, а превращает нейтрон в протон, одновременно создавая в той же точке пространства электрон и антинейтрино. Последовало четверть века усилий экспериментаторов, потраченных на то, чтобы связать концы с концами в теории Ферми. Главным невыясненным вопросом был вопрос о том, как слабая сила зависит от относительной ориентации спинов частиц, участвующих в процессе. В 1957 г. это было наконец установлено, и теория Ферми приняла окончательный вид[90].
После решительного прорыва, совершенного в 1957 г., казалось, уже не осталось никаких проблем в нашем понимании слабой ядерной силы. И все же, хотя мы имели теорию, способную дать численный ответ для любого наблюдаемого на опыте явления, связанного со слабой силой, сама теория казалась физикам в высшей степени неудовлетворительной. Многие из нас в тяжких трудах пытались улучшить теорию и придать ей смысл.
Недостатки теории Ферми были связаны не с экспериментом, а с самой теорией. Прежде всего, хотя теория хорошо описывала ядерный бета-распад, она приводила к бессмысленным результатам для более экзотических процессов. Теоретики пытались задавать совершенно осмысленные вопросы, например, какова вероятность рассеяния нейтрино при столкновении с электроном. Когда же они пытались вычислить эту вероятность (принимая во внимание испускание и последующее поглощение нейтрона и антипротона), ответ оказывался бесконечным. Как вы понимаете, сами подобные эксперименты еще не были проделаны, но вычисления давали такие результаты, которые никогда не могли бы быть согласованы с каким бы то ни было опытом. Как мы уже видели, в 1930-е гг. подобные бесконечности были обнаружены Оппенгеймером и другими в теории электромагнитных сил, но в конце 1940-х гг. теоретики обнаружили, что все эти бесконечности в квантовой электродинамике сокращаются при правильном определении или «перенормировке» массы и заряда электрона. Чем больше физики узнавали о свойствах слабых сил, тем яснее становилось, что бесконечности в теории Ферми подобным образом не сокращаются – теория была неперенормируемой.
Но была и другая трудность в теории слабых сил – она содержала слишком много произвольных параметров. Существенные характеристики слабой силы более или менее непосредственно извлекались из эксперимента и могли варьироваться в широких пределах без нарушения каких-либо известных физических принципов.
В течение долгого времени, начиная со старших курсов университета, я так и сяк пытался работать над теорией слабых сил, но в 1967 г. меня увлекли проблемы сильных ядерных сил, удерживающих протоны и нейтроны внутри атомных ядер. Я пытался развить теорию сильного взаимодействия по аналогии с квантовой электродинамикой[91]. Мне казалось, что различие между сильными ядерными силами и электромагнетизмом можно объяснить с помощью явления, известного под названием нарушение симметрии (ниже я объясню, что это такое). Моя идея не сработала. Силы сильного взаимодействия в развитой мной теории были совершенно не похожи на те, которые известны нам из опыта. Но затем внезапно до меня дошло, что идеи, оказавшиеся совершенно непригодными для объяснения сильных взаимодействий, дают математическую основу теории слабой ядерной силы, содержащую все, что только можно пожелать. Я увидел возможность построения теории слабой силы, аналогичной квантовой электродинамике. Точно так же, как электромагнитная сила между зарядами, находящимися на расстоянии друг от друга, обусловлена обменом фотонами, так и слабая сила проявляет свое действие не в какой-то одной точке пространства (как в теории Ферми), а порождается обменом фотоноподобными частицами между частицами материи, находящимися в разных точках. Эти новые фотоноподобные частицы не могут быть безмассовыми как фотоны (один из аргументов заключается в том, если бы они были безмассовыми, их бы давно обнаружили), но они вводятся в теорию способом, настолько похожим на тот, благодаря которому в квантовой электродинамике возникают фотоны, что я подумал: а не будет ли такая теория перенормируемой в том же смысле, что и квантовая электродинамика, т.е. не сократятся ли все бесконечности за счет переопределения масс и других параметров теории. Кроме того, вид теории сильно зависел от положенных в основу принципов, поэтому можно было в значительной степени избежать того произвола, который существовал в предыдущих теориях.
Мне удалось построить конкретный вариант подобной теории, т.е. написать определенную систему уравнений, определяющих закон взаимодействия частиц друг с другом и сводящихся в приближении малых энергий к теории Ферми. Хотя вначале у меня и в мыслях не было ничего подобного, но в процессе работы я обнаружил, что построенная мной теория оказалась не просто теорией слабой силы, развитой на базе аналогии с электромагнетизмом; эта теория оказалась единой теорией электромагнитных и слабых сил, которые, как выяснилось, суть две разные ипостаси одной и той же силы, которую сейчас принято называть электрослабой силой. Фундаментальная частица фотон, испускание и поглощение которого порождает электромагнитные силы, оказался тесными узами связан в одно семейство с другими фотоноподобными частицами, существование которых предсказывала теория: электрически заряженными частицами W, обмен которыми порождает силы, ответственные за бета-радиоактивность, и нейтральной частицей Z, о которой я расскажу чуть ниже. (Частицы W давно фигурировали в разных теориях, пытавшихся объяснить слабые силы; само обозначение W происходит от слова weak – слабый. Я выбрал для обозначения нейтральной частицы букву Z, так как эта частица имеет нулевой (zero) электрический заряд, и, кроме того, потому что Z – последняя буква в английском алфавите, а я надеялся, что эта частица будет последней в семействе). По существу, такую же теорию независимо построил в 1968 г. пакистанский физик Абдус Салам, работавший тогда в Триесте. Некоторые аспекты этой теории рассматривались в работе Салама и Джона Уорда и еще раньше в работе моего товарища по колледжу и Корнеллскому университету Шелдона Глэшоу.
Таким образом, похоже, удалось объединить слабые и электромагнитные силы. Любому хочется объяснить все больше и больше вещей с помощью все меньшего числа идей, хотя, повторю еще раз, я совершенно не понимал, куда идет дело, когда начинал свои исследования. Но при всем при этом в 1967 г. предложенная теория не давала никаких объяснений ни одной экспериментальной аномалии в физике слабых сил. Не существовало экспериментальной информации, которую могла бы объяснить эта теория, и которая ранее не была бы объяснена в рамках теории Ферми. Поэтому сначала новая теория электрослабых сил не вызвала никакого интереса. Но я не думаю, что теория не заинтересовала других физиков только потому, что не имела экспериментальной поддержки. Не менее важным был чисто теоретический вопрос о внутренней согласованности теории.
И Салам, и я высказали убеждение, что теория устранит проблемы бесконечностей при расчете процессов, обусловленных слабыми силами. Но у нас не хватило сообразительности это доказать. В 1971 г. я получил препринт работы молодого студента-старшекурсника Утрехтского университета по имени Герард ’т Хофт, в которой он утверждал, что наша теория действительно разрешила проблемы бесконечностей: при вычислении наблюдаемых величин эти бесконечности действительно сокращали друг друга, в точности так же, как в квантовой электродинамике.
Сначала работа ’т Хофта меня не убедила. Я никогда не слышал о нем, а разработанный Фейнманом математический прием, использованный в работе, незадолго до этого был мною подвергнут сомнению. Вскоре, однако, я услышал, что теоретик Бен Ли серьезно отнесся к идеям ’т Хофта и попытался получить те же результаты, используя более привычные математические методы. Я знал Бена Ли и очень его уважал – раз уж он счел, что в работе ’т Хофта что-то есть, я не должен ею пренебрегать. (Позднее Бен стал моим лучшим другом и сотрудником. Он трагически погиб в автомобильной катастрофе в 1977 г.) Более внимательно посмотрев на то, что сделал ’т Хофт, я убедился, что он действительно нашел ключ к доказательству сокращения всех бесконечностей.
Хотя все еще не существовало ни малейших экспериментальных свидетельств в пользу электрослабой теории, но именно после работы ’т Хофта она стала частью рабочего аппарата физики. Это как раз тот случай, когда можно с достаточной точностью описать уровень интереса к научной теории. Так случилось, что Институт научной информации опубликовал данные по количеству цитирований моей первой работы по электрослабой теории, как пример того, насколько анализ цитирований может быть полезен при изучении истории науки. Моя статья была опубликована в 1967 г. В том году количество ссылок на нее равнялось нулю[92]. В период 1968–1969 гг. количество ссылок опять равнялось нулю. (В это время и Салам, и я пытались доказать то, что в конце концов удалось ’т Хофту, т.е. что теория свободна от бесконечностей.) В 1970 г. на работу сослались один раз. (Я не знаю, кто это сделал.) В 1971 г., т.е. в том году, когда была сделана работа ’т Хофта, появилось три ссылки, одна из которых принадлежала ’т Хофту. В 1972 г., все еще не имея никакой поддержки со стороны эксперимента, работа внезапно получила 65 ссылок. В 1973 г. число ссылок составило 165, затем это число постепенно возрастало, пока в 1980 г. не составило 330 ссылок. Недавнее исследование того же института показало, что моя работа оказалась самой цитируемой работой по физике элементарных частиц за все предыдущие пятьдесят лет[93].
- Бабочка и ураган. Теория хаоса и глобальное потепление - Мадрид Карлос - Математика
- φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио - Математика
- Введение в теорию риска (динамических систем) - Владимир Живетин - Математика
- Криптография и свобода - Михаил Масленников - Математика
- Математика для любознательных - Яков Перельман - Математика
- Русско-Ордынская империя - Анатолий Фоменко - Математика
- Популярно о конечной математике и ее интересных применениях в квантовой теории - Феликс Лев - Математика / Физика
- Великая Теорема Ферма - Саймон Сингх - Математика
- Вероятность как форма научного мышления - Виктор Лёвин - Математика
- Древние мифы и физика. Алгебра, логика и физика о реальности времени - Александр Мальцев - Математика