Рейтинговые книги
Читем онлайн Загадка булатного узора - Юрий Гуревич

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 41

Из приготовленного нами булата были выкованы клинки разных форм и сечений. Наступило время решать вопрос о режимах их термической обработки — закалке и отпуске.

П. П. Аносов закаливал булаты в зависимости от назначения в сале или воде, причем самые твердые из них — преимущественно в сале, предварительно нагретом почти до температуры кипения. Применение сала, а в наше время — масла в качестве охлаждающей среды при закалке значительно уменьшает возникновение в стали закалочных дефектов, так как эта среда обеспечивает сравнительно небольшую скорость охлаждения в момент превращения аустенита в мартенсит.

Известно, что многие металлурги придавали большое значение режимам закалки булата и даже относили их к основным секретам приготовления булатного оружия.

В дальнейшем читатель убедится, что для такого мнения есть веские основания. В то же время полученная нами слоистая структура булата в отожженном состоянии не давала никаких оснований опасаться того, что булатный узор будет разрушен в результате последующей закалки при любых выбранных режимах нагрева и охлаждения.

Зная микроструктуру отожженной стали и ее химический состав, подобрать оптимальную температуру нагрева под закалку и необходимые скорости охлаждения при современном состоянии науки не так уж трудно. Очевидно, свойства булата будут тем выше, чем тверже и прочнее металл в зонах железоуглеродистого сплава заэвтектоидного состава. Что касается участков железа или малоуглеродистой стали, то они при нагревах и охлаждении под закалку должны сохранять ферритную структуру и обеспечивать пластичность и вязкость булата.

Наибольшую твердость после закалки может обеспечить только мартенситная структура с крупными включениями цементита. Поскольку такие включения карбидов железа уже получены в стали после отжига, следует осуществлять нагрев под закалку до таких температур, чтобы они не растворялись полностью в аустените. С этих позиций нагрев стали надо было бы осуществлять до температур порядка 740–750 °C (см. рис. 2). При достаточной выдержке при таких температурах перлит полностью превратится в аустенит, а карбиды раствориться в аустените не успеют.

Однако предварительными экспериментами было установлено, что нагрев до температур 740–750 °C и последующее быстрое охлаждение булата в масле приводят к образованию смешанной троостито-мартенситной структуры, которая максимальную твердость стали обеспечить не может. Выпадение троостита в данном случае объясняется тем, что имеющиеся карбиды являются готовыми центрами кристаллизации для перлита (троостита) и облегчают его образование даже при высоких скоростях охлаждения стали.

Чтобы увеличить скорость охлаждения, необходимо было поднять температуру нагрева стали. После закалки от температур 850–870 °C сталь имела мартенситную структуру, но появились участки остаточного аустенита и наблюдалось значительное измельчение карбидов. Такая структура также не могла обеспечить необходимую твердость и износостойкость.

Оказалось, что только закалкой от узкого интервала температур 810–830 °C можно получить требуемые структуры и свойства булата.

На фото 13, а показана микроструктура закаленного булата с ферритными прослойками. Слева видна ферритная зона, справа — зона мелкоигольчатого мартенсита с включениями крупных и мелких карбидов, которые группируются у границы структурных зон. Микротвердость мартенситной зоны в 5 раз выше ферритной. Чередование мягких и пластичных ферритных зон с твердыми мартенситными прослойками наблюдается в объеме всего металла (фото 13, б). Примечательно, что и в ферритной зоне встречались крупные включения мартенсита (фото 13, в). Чередование феррито-мартенситных зон с мартенситными показано на фото 13, г. В мартенситных зонах наблюдались мелкие зерна остаточного аустенита.

Аналогичные структуры были выявлены после закалки булата с углеродистыми прослойками. Интересно, что микроструктура этого булата после нормализации от 810 °C и образца кованого булата П. Н. Швецова были очень похожи. В этом мы находим подтверждение того, что П. Н. Швецов умел готовить булат только с углеродистыми прослойками.

После детального изучения свойств закаленного булата сделанные образцы холодного оружия и инструмента было решено подвергнуть следующей термообработке: закалке от 810–830° в воде и масле и низкому отпуску при 180–230 °C. Готовые изделия были отполированы, протравлены уксусной кислотой и промыты дистиллированной водой. Часть изделий хромировалась и никелировалась, при этом узор полностью сохранялся.

В отделе оружия Государственного исторического музея хранится авторское свидетельство на изобретение за № 116334 от 18 февраля 1955 года «Способ изготовления слитков булатной стали», а рядом на стенде — кортик и полированные плитки с причудливыми узорами. Все это создано златоустовскими металлургами И. Н. Голиковым, П. В. Васильевым, Ю. Г. Гуревичем, Н. Ф. Лонгиновым и Ю. И. Люндовским.

На мечах, шпажных клинках, кортиках, топорах и ножах разных форм хорошо просматривались узоры всех сортов булата (См. фото 8, 9, 10, 11, 14). Часть этих изделий экспонировалась на Всесоюзной выставке достижений народного хозяйства СССР в 1956 году. В Златоустовском городском музее демонстрируется также кубок из булатной стали, изготовленный в честь 200-летия города Златоуста.

Клинки из нашего булата рубили гвозди и обладали высокими режущими свойствами. Несмотря на большую твердость, они обладали достаточно высокой вязкостью: при ударах значительной силы поломать их не удавалось. Булатные ножи для рубанка работали без заточки в несколько раз дольше, чем ножи из обычной углеродистой стали.

К сожалению, легендарной упругости булатных клинков достичь не удалось. Хорошо известно, что высокую упругость можно обеспечить тщательной шлифовкой и тонкой полировкой изделий. Так, например, Д. К. Чернов показал, что если хорошо отполировать кристалл поваренной соли, то даже он приобретает упругость. Н. Т. Беляев подчеркивал, что «полировка изделий доводилась П. П. Аносовым до такого совершенства, что готовые изделия, в сущности, являлись шлифами». Условиями для подобной отделки образцов булата мы не располагали.

А вот «харалужные» (цветастые) булаты мы приготовляли успешно. Для этого обычный булат с ферритными или углеродистыми прослойками оксидировался в обычной нагревательной печи при температуре 200–400 °C. В связи с тем что цвет стали при нагревании на воздухе изменяется в зависимости от содержания в ней углерода, нам удавалось получать на фоне золотистой матрицы красивые сиреневые узоры.

В июле 1961 года в Златоусте вновь собрались металлурги со всей страны. Здесь состоялось Всесоюзное совещание прокатчиков. Участникам совещания в качестве сувениров были подарены пластины из узорчатой стали…

Секреты булата

После того как разработана технология получения булатных слитков, показаны приемы получения рисунков различных сортов узорчатой стали и оценены ее свойства, представляет интерес еще раз проанализировать данные, которые накопила история и наука о производстве этой замечательной стали, ее термической обработке и отделке.

Наши разработки теории и производства булата убедительно показали, что булатный узор и необыкновенные свойства этой стали являются следствием не только макро-, но и микронеоднородности металла. Если макронеоднородность зависит от физической неоднородности, обусловленной сохранением в объеме жидкой стальной ванны недорасплавленных частиц с небольшим содержанием углерода, то микронеоднородность возникает вследствие диффузии углерода из слоя в слой при нагревах изделий и тщательного «перемешивания» слоев металла во время пластической деформации.

Таким образом, с одной стороны, правильна расшифровка работ П. П. Аносова профессором А. П. Виноградовым; с другой — Д. К. Чернов, Н. И. Беляев и их последователи совершенно верно указывали на необычную микронеоднородность булата. В связи с этим экспериментально полученные А. П. Виноградовым узоры на образцах низкоуглеродистой стали являются только имитацией булата, поскольку в микроструктуре такой стали не наблюдаются выделения цементита (карбидов).

Очевидно, и наши разработки не могут претендовать на полное воспроизведение свойств булата, качество которого, как уже неоднократно указывалось, зависело от многих факторов: чистоты и состава исходных материалов, способов деформации и термической обработки, отделки, шлифовки и полировки готовых изделий.

В наше время хорошо известно: чистота и свойства железа и стали зависят не только от содержания в них таких вредных примесей, как кислород, сера и фосфор, но и от загрязненности металла неметаллическими включениями, представляющими собой главным образом мельчайшие частицы оксидов тугоплавких элементов. Применяемое нами мягкое железо, например, было получено путем окисления в жидкой стали ненужных примесей и перевода их в шлаковую фазу. Поэтому наше «чистое» по кремнию и марганцу железо обязательно содержало включения оксидов этих элементов.

1 ... 25 26 27 28 29 30 31 32 33 ... 41
На этой странице вы можете бесплатно читать книгу Загадка булатного узора - Юрий Гуревич бесплатно.
Похожие на Загадка булатного узора - Юрий Гуревич книги

Оставить комментарий