Шрифт:
Интервал:
Закладка:
Всякий раз, когда «сетчатка» обучающегося алгоритма видит новый образ, сигнал распространяется по всей сети, пока не даст выход. Сравнение полученного выхода с желаемым выдает сигнал ошибки, который затем распространяется обратно через все слои и достигает сетчатки. На основе возвращающегося сигнала и вводных, полученных во время прохождения вперед, каждый нейрон корректирует веса. По мере того как сеть видит все новые и новые изображения вашей бабушки и других людей, веса постепенно сходятся со значениями, которые позволяют отличить одно от другого. Метод обратного распространения ошибки, как называется этот алгоритм, несравнимо мощнее перцептрона. Единичный нейрон может найти только прямую линию, а так называемый многослойный перцептрон — произвольно запутанные границы, при условии что у него есть достаточно скрытых нейронов. Это делает обратное распространение ошибки верховным алгоритмом коннекционистов.
Обратное распространение — частный случай стратегии, очень распространенной в природе и в технологии: если вам надо быстро забраться на гору, выбирайте самый крутой склон, который только найдете. Технический термин для этого явления — «градиентное восхождение» (если вы хотите попасть на вершину) или «градиентный спуск» (если смотреть на долину внизу). Бактерии умеют искать пищу, перемещаясь согласно градиенту концентрации, скажем, глюкозы, и убегать от ядов, двигаясь против их градиента. С помощью градиентного спуска можно оптимизировать массу вещей, от крыльев самолетов до антенных систем. Обратное распространение — эффективный способ такой оптимизации в многослойном перцептроне: продолжайте корректировать веса, чтобы снизить возможность ошибки, и остановитесь, когда станет очевидно, что корректировки ничего не дают. В случае обратного распространения не надо разбираться, как с нуля корректировать вес каждого нейрона (это было бы слишком медленно): это можно делать слой за слоем, настраивая каждый нейрон на основе уже настроенных, с которыми он соединен. Если в чрезвычайной ситуации вам придется выбросить весь инструментарий машинного обучения и спасти что-то одно, вы, вероятно, решите спасти градиентный спуск.
Так как же обратное распространение решает проблему машинного обучения? Может быть, надо просто собрать кучу нейронов, подождать, пока они наколдуют все, что надо, а потом по дороге в банк заехать получить Нобелевскую премию за открытие принципа работы мозга? К сожалению, в жизни все не так просто. Представьте, что у вашей сети только один вес; зависимость ошибки от него показана на этом графике:
Оптимальный вес, в котором ошибка самая низкая, — это 2,0. Если сеть начнет работу, например, с 0,75, обратное распространение ошибки за несколько шагов придет к оптимуму, как катящийся с горки мячик. Однако если начать с 5,5, мы скатимся к весу 7,0 и застрянем там. Обратное распространение ошибки со своими поэтапными изменениями весов не сможет найти глобальный минимум ошибки, а локальные минимумы могут быть сколь угодно плохими: например, бабушку можно перепутать со шляпой. Если вес всего один, можно перепробовать все возможные значения c шагом 0,01 и таким образом найти оптимум. Но когда весов тысячи, не говоря уже о миллионах или миллиардах, это не вариант, потому что число точек на сетке будет увеличиваться экспоненциально с числом весов. Глобальный минимум окажется скрыт где-то в бездонных глубинах гиперпространства — ищи иголку в стоге сена.
Представьте, что вас похитили, завязали глаза и бросили где-то в Гималаях. Голова раскалывается, с памятью не очень, но вы твердо знаете, что надо забраться на вершину Эвереста. Как быть? Вы делаете шаг вперед и едва не скатываетесь в ущелье. Переведя дух, вы решаете действовать систематичнее и осторожно ощупываете ногой почву вокруг, чтобы определить самую высокую точку. Затем вы робко шагаете к ней, и все повторяется. Понемногу вы забираетесь все выше и выше. Через какое-то время любой шаг начинает вести вниз, и вы останавливаетесь. Это градиентное восхождение. Если бы в Гималаях существовал один Эверест, причем идеальной конической формы, все было бы прекрасно. Но, скорее всего, место, где все шаги ведут вниз, будет все еще очень далеко от вершины: вы просто застрянете на каком-нибудь холме у подножья. Именно это происходит с обратным распространением ошибки, только на горы оно взбирается в гиперпространстве, а не в трехмерном пространстве, как наше. Если ваша сеть состоит из одного нейрона и вы будете шаг за шагом подниматься к наилучшим весам, то придете к вершине. Но в многослойном перцептроне ландшафт очень изрезанный — поди найди высочайший пик.
Отчасти поэтому Минский, Пейперт и другие исследователи не понимали, как можно обучать многослойные перцептроны. Они могли представить себе замену ступенчатых функций S-образными кривыми и градиентный спуск, но затем сталкивались с проблемой локальных минимумов ошибки. В то время ученые не доверяли компьютерным симуляциям и требовали математических доказательств работоспособности алгоритма, а для обратного распространения ошибки такого доказательства не было. Но, как мы уже видели, в большинстве случаев локального минимума достаточно. Поверхность ошибки часто похожа на дикобраза: много крутых пиков и впадин, и на самом деле неважно, найдем ли мы самую глубокую, абсолютную впадину — сойдет любая. Еще лучше то, что локальный минимум бывает даже предпочтительнее, потому что он меньше подвержен переобучению, чем глобальный.
Гиперпространство — обоюдоострый меч. С одной стороны, чем больше количество измерений, тем больше места для очень сложных поверхностей и локальных экстремумов. С другой стороны, чтобы застрять в локальном экстремуме, надо застрять во всех измерениях, а во многих одновременно застрять сложнее, чем в трех. В гиперпространстве есть перевалы, проходящие через всю (гипер)местность, поэтому с небольшой помощью со стороны человека обратное распространение ошибки зачастую способно найти путь к идеально хорошему набору весов. Может быть, это не уровень моря, а только легендарная долина Шангри-Ла, но на что жаловаться, если в гиперпространстве миллионы таких долин и к каждой ведут миллиарды перевалов?
Тем не менее придавать слишком большое значение весам, которые находит обратное распространение ошибки, не стоит. Помните, что есть, вероятно, много очень разных, но одинаково хороших вариантов. Обучение многослойного перцептрона хаотично в том смысле, что, начав из слегка отличающихся мест, он может привести к весьма различным решениям. Этот феномен проявляется в случае незначительных отличий как в исходных весах, так и в обучающих данных и имеет место во всех мощных обучающихся алгоритмах, а не только в обратном распространении ошибки.
Мы могли бы избавиться от проблемы локальных экстремумов, убрав наши сигмоиды и позволив каждому нейрону просто выдавать взвешенную сумму своих входов. Поверхность ошибки стала бы в этом случае очень гладкой, и остался бы всего один минимум — глобальный. Дело, однако, в том, что линейная функция линейных функций — по-прежнему линейная функция, поэтому сеть линейных нейронов ничем не лучше, чем единичный нейрон. Линейный мозг, каким бы большим он ни был, будет глупее червяка. S-образные кривые — просто хороший перевалочный пункт между глупостью линейных функций и сложностью ступенчатых функций.
Перцептроны наносят ответный удар
Метод обратного распространения ошибки был изобретен в 1986 году Дэвидом Румельхартом, психологом из Калифорнийского университета в Сан-Диего, в сотрудничестве с Джеффом Хинтоном и Рональдом Уильямсом66. Они доказали, кроме всего прочего, что обратное распространение способно справиться с исключающим ИЛИ, и тем самым дали коннекционистам возможность показать язык Минскому и Пейперту. Вспомните пример с кроссовками Nike: подростки и женщины среднего возраста — их наиболее вероятные покупатели. Это можно представить с помощью сети из трех нейронов: один срабатывает, когда видит подростка, другой — женщину среднего возраста, а третий — когда активизируются оба. Благодаря обратному распространению ошибки можно узнать соответствующие веса и получить успешный детектор предполагаемых покупателей Nike. (Вот так-то, Марвин.)
В первых демонстрациях мощи обратного распространения Терри Сейновски и Чарльз Розенберг обучали многослойный перцептрон читать вслух. Их система NETtalk сканировала текст, подбирала фонемы согласно контексту и передавала их в синтезатор речи. NETtalk не только делал правильные обобщения для новых слов, чего не умели системы, основанные на знаниях, но и научился говорить очень похоже на человека. Сейновски любил очаровывать публику на научных мероприятиях, пуская запись обучения NETtalk: сначала лепет, затем что-то более внятное и наконец вполне гладкая речь с отдельными ошибками. (Поищите примеры на YouTube по запросу sejnowski nettalk.)
- The Grail Quest 1 - Harlequin - Bernard Cornwell - Прочее
- How to draw manga: Step-by-step guide for learning to draw basic manga chibis - Kim Sofia - Прочее
- The Grail Quest 2 - Vagabond - Bernard Cornwell - Прочее
- Жизнь и приключения Санта-Клауса - Лаймен Фрэнк Баум - Зарубежные детские книги / Прочее
- Системный сбой - Александр Николаевич Бубенников - Криминальный детектив / Прочее
- Приколы новорусские - Илья Рыков - Прочее
- Знаменитые убийцы и жертвы - Александр Лаврин - Прочее
- Что движет Россией - Морис Бэринг - Путешествия и география / История / Прочее
- Безынициативный скелет - Илья Иванов - Прочее / Периодические издания
- Вся правда о нас - Макс Фрай - Прочее