Рейтинговые книги
Читем онлайн Как же называется эта книга - Рэймонд Смаллиан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 31 32 33 34 35 36 37 38 39 ... 46

Вы находитесь в летней кухне. В вашем распоряжении нерастопленная плита, коробок спичек, кран с холодной водой и пустая кастрюля. Требуется нагреть кастрюлю воды. Что бы вы стали делать? Должно быть, на этот вопрос вы ответили бы так: "Я налил бы в кастрюлю холодной воды из крана, зажег плиту, поставил кастрюлю на огонь и подождал бы, пока вода в кастрюле не нагреется". Прекрасно! На этом этапе между математиками и физиками царит полное согласие. Различие в подходе обнаруживается при попытке решить следующую задачу.

Вы снова находитесь в летней кухне. В вашем распоряжении нерастопленная плита, коробок спичек, кран с холодной водой и кастрюля, в которую налита холодная вода. Требуется нагреть кастрюлю воды. Что бы вы стали делать? Большинство людей отвечают: "Зажег бы плиту и поставил кастрюлю с водой на огонь". Если вы думаете так же, то вы физик!

Математик бы вылил воду из кастрюли и тем самым свел бы новую задачу к предыдущей, которая решена.

Мы могли бы продвинуться еще на один шаг и рассмотреть случай, когда кастрюля с холодной водой уже поставлена на огонь. Как получить горячую воду в этом случае? Физик просто подождал бы, пока вода не нагреется, а математик погасил бы огонь, вылил воду из кастрюли и тем самым свел бы нашу новую задачу к первой (или ограничился бы тем, что погасил огонь, сведя задачу ко второй, уже решенной).

Еще более наглядно различие между физиком и математиком проявляется в следующем ("драматическом") варианте задачи. Представьте себе, что в доме, где вы находитесь, начался пожар. В вашем распоряжении пожарный кран и шланг (не присоединенный ни к чему). Как потушить пожар? Ясно, что прежде всего необходимо присоединить шланг к крану, а затем пустить струю воды в пламя. Предположим теперь, что в вашем распоряжении пожарный кран, шланг (не присоединенный ни к чему) и никакого пожара в доме нет. Как бы вы стали тушить пожар?. Математик сначала поджег бы дом, чтобы свести задачу к предыдущей.

212. Фон Нейман и задача о мухе.

Эту задачу можно решить двумя способами: "трудным" и "легким".

Два поезда, находившиеся на расстоянии 200 км друг от друга, сближаются по одной колее, причем каждый развивает скорость 50 км/ч. С ветрового стекла одного локомотива в начальный момент движения взлетает муха и принимается летать со скоростью 75 км/ч вперед и назад между поездами, пока те, столкнувшись, не раздавят ее. Какое расстояние успевает пролететь муха до столкновения?

С каждым из поездов муха успевает повстречаться бесконечно много раз. Чтобы найти расстояние, которое муха преодолела в полете, можно просуммировать бесконечный ряд расстояний (эти расстояния убывают достаточно быстро, и ряд сходится).

Это - "трудное" решение. Чтобы получить его, вам понадобятся карандаш и бумага. "Легкое" решение состоит в следующем. Поскольку в начальный момент расстояние между поездами равно 200 км, а каждый поезд развивает скорость 50 км/ч, то от начала движения до столкновения проходит 2 ч.

Все эти 2 ч муха находится в полете. Поскольку она развивает скорость 75 км/ч, то до того момента, как столкнувшиеся локомотивы раздавят ее, муха успеет пролететь 150 км. Вот и все!

Один из выдающихся математиков современности, Джон фон Нейман, когда ему задали эту задачу, задумался лишь на миг и сказал: "Ну, конечно, 150 км!" Приятель спросил его:

"Как вам удалось так быстро получить ответ?" "Я просуммировал ряд", ответил математик.

213.

О фон Неймане рассказывают следующую забавную историю.

Некогда он консультировал специалистов, строивших ракету-носитель для космического корабля. Увидев остов ракеты, фон Нейман спросил у сопровождавших его сотрудников: "Кто сконструировал ракету?" "Наши инженеры," - ответили ему. "Инженеры!" - презрительно повторил фон Нейман. - Я разработал полную математическую теорию ракет. Возьмите мою работу 1952 г. и вы найдете там все, что вас интересует". Специалисты раздобыли работу, о которой говорил фон Нейман, сдали на слом разработанную ими конструкцию ракеты (на которую к тому времени было израсходовано 10 млн долларов) и построили новую ракету, неукоснительно следуя рекомендациям фон Неймана. Но их постигла неудача: при нажатии на кнопку "Пуск" раздался оглушительный взрыв, и ракета разлетелась на мелкие кусочки. В гневе ракетчики позвали фон Неймана и спросили: "Мы выполнили все ваши рекомендации, а ракета все- таки взорвалась при запуске. Почему?" Фон Нейман ответил: "То, о чем вы говорите, относится к так называемой теории сильного взрыва. Я рассмотрел ее в своей работе 1954 г. В ней вы найдете все, что вас интересует".

214.

Рассказывают, будто в Принстоне жила девочка, которой никак не давалась арифметика. И вдруг за какие-нибудь два месяца она стала великолепно успевать по этому предмету. Мать спросила у нее, в чем причина неожиданных успехов. Девочка ответила: "Как-то раз я услышала, что в нашем городе есть профессор, который хорошо разбирается в арифметике. Я узнала, где он живет, пришла к нему, и с тех пор он каждый день помогает мне готовить уроки. Объясняет он все очень понятно". Мать несколько озадаченно спросила, не знает ли дочь, как фамилия профессора. Девочка ответила: "Точно не скажу, не помню. Кажется, Эйнштейн или как-то очень похоже".

215.

В разговоре с одним из своих коллег Эйнштейн заметил однажды, что не хотел бы преподавать в колледже с совместным обучением юношей и девушек. По его мнению, юноши смотрели бы на красивых сокурсниц и не уделяли бы должного внимания математике и физике. Знакомый Эйнштейна возразил:

"Вас бы юноши слушали, боясь проронить слово". Эйнштейн ответил: "Такие юноши не стоят того, чтобы им преподавать".

216.

Следующий анекдот отчетливо показывает различие между физиком и математиком.

Физик и математик летят на одном самолете из Калифорнии в Вашингтон. Каждого из них попросили по прибытии в Вашингтон представить отчет обо всем увиденном в пути.

Пролетая над Канзасом, оба увидели далеко внизу черную овцу. Физик записал в блокноте: "В Канзасе водится черная овца". Математик также сделал соответствующую запись в своем блокноте: "Где-то на Среднем Западе водится овца, черная сверху".

В. ИСТОРИИ О ВЕРМОНТЦАХ

217.

Предыдущая история напомнила мне один случай, происшедший с американским президентом Кальвином Кулиджем. Вместе с группой друзей Кулидж однажды посетил животноводческую ферму. Когда они подошли к стаду овец, один из друзей президента заметил: "Я вижу, что овец недавно остригли".

"По крайней мере с этой стороны они выглядят так, как будто их остригли," - отозвался Кулидж.

218.

Когда юморист Уилл Роджерс собрался на прием к президенту Кулиджу, его предупредили, что президента невозможно рассмешить. Роджерс спокойно ответил: "Ничего, я все-таки попробую". И ему действительно удалось рассмешить Кулиджа.

Когда Роджерса подвели к президенту и представлявший произнес: "Мистер Роджерс, позвольте представить вас президенту Кулиджу", Уилл Роджерс повернулся к президенту и с любезной улыбкой сказал: "Простите, я не расслышал вашей фамилии. С кем имею честь?"

219.

Кальвин Кулидж был типичным вермонтцем, а я лоблю истории о вермонтцах. Вот одна из них. Человек проходит мимо дома вермонтского фермера. Хозяин сидит на крыльце в кресле-качалке и невозмутимо покачивается. Прохожий замечает: "Так и качаетесь всю жизнь?" На что хозяин дома отвечает:

"Пока еще не всю".

220.

Вермонтцам (по крайней мере таким, какими мы знаем их по бесчисленным юмористическим историям) присуща одна характерная черта: если вермонтца спросить о чем-нибудь, он даст точный ответ, но нередко умолчит об информации, которая может относиться к делу и быть весьма существенной.

Великолепной иллюстрацией этой особенности может служить анекдот об одном вермонтском фермере, который отправился на соседнюю ферму, чтобы спросить у ее владельца: "Лем, что ты давал своей лошади в прошлом году, когда у нее были колики?" Лем ответил: "Отруби с черной патокой". Фермер вернулся домой. Через неделю он снова пришел к соседу и сообщил: "Лем, я дал своей лошади отрубей с черной патокой, и она сдохла". Лем ответил: "Моя тоже".

221.

Из историй о вермонтцах мне особенно нравится рассказ о туристе, путешествовавшем по Вермонту. Однажды он оказался на развилке. У обочины одной дороги стоял указатель "К устью реки Белой". У обочины другой дороги тоже стоял указатель "К устью реки Белой". Турист задумчиво почесал в затылке и спросил у стоявшего неподалеку вермонтца:

"Если обе дороги ведут к устью реки Белой, то не все ли равно, по какой дороге мне идти?" "Мне все равно", - ответил вермонтец.

Г. ТАК ЛИ ОЧЕВИДНО?

222.

Эту историю рассказывают о многих математиках. Некий профессор во время лекции, сформулировав теорему, сказал:

"Доказательство очевидно". Студент поднял руку и спросил:

1 ... 31 32 33 34 35 36 37 38 39 ... 46
На этой странице вы можете бесплатно читать книгу Как же называется эта книга - Рэймонд Смаллиан бесплатно.
Похожие на Как же называется эта книга - Рэймонд Смаллиан книги

Оставить комментарий