Шрифт:
Интервал:
Закладка:
Я упоминал, что принципы симметрии придают теориям определенную жесткость. Может показаться, что это недостаток, что физик хочет развивать теории, способные охватить как можно более широкий круг явлений, и поэтому предпочел бы, чтобы теории были как можно более гибкими и не теряли смысла при самых разных обстоятельствах. Да, во многих областях науки это верно, но только не в той области фундаментальной физики, о которой идет речь. Мы находимся на пути к чему-то универсальному, к чему-то, что управляет физическими явлениями везде во Вселенной, к тому, что мы называем законами природы. Мы не хотим разрабатывать теорию, способную описать все мыслимые типы сил, которые могли бы действовать между частицами в природе. Напротив, мы надеемся найти такую теорию, которая жестко позволила бы нам описать только те силы – гравитационную, электрослабую и сильную, которые существуют на самом деле. Жесткость такого рода в наших физических теориях есть часть того, что мы понимаем под их красотой.
Но не только принципы симметрии придают нашим теориям жесткость. Основываясь только на этих принципах, мы не смогли бы прийти к электрослабой теории или квантовой хромодинамике; эти теории выступали бы как частные случаи намного более широкого круга теорий с неограниченным набором настраиваемых констант, которые могли бы выбираться совершенно произвольно. Дополнительные ограничения, позволяющие отобрать нашу простую стандартную модель из множества других, более сложных, теорий, удовлетворяющих тем же принципам симметрии, связаны с требованием, чтобы полностью сокращались все бесконечности, которые возникают в вычислениях. (Иначе говоря, теория должна быть «перенормируемой»[107].) Это условие, как оказывается, придает уравнениям теории большую простоту и вместе с разными локальными симметриями позволяет придать законченную форму нашей стандартной модели элементарных частиц.
Красота, которую мы обнаруживаем в таких теориях, как ОТО или стандартная модель, сродни той красоте, которую мы ощущаем в некоторых произведениях искусства благодаря вызываемому ими ощущению законченности и неизбежности: не хочется менять ни одной ноты, ни одного мазка кисти, ни одной строки. Однако, как и в нашем восприятии музыки, живописи или поэзии, это ощущение неизбежности есть дело вкуса и опыта и не может быть сведено к «сухой» формуле.
Каждые два года лаборатория им. Лоуренса в Беркли издает маленькую книжечку, в которой перечислены известные на данный момент свойства элементарных частиц25). Если я выскажу утверждение: фундаментальным законом природы является то, что элементарные частицы имеют свойства, которые перечислены в книжечке, то отсюда можно будет сделать вывод, что известные свойства элементарных частиц следуют из этого фундаментального принципа. Этот принцип даже имеет некоторую предсказательную силу: каждый новый протон или электрон, созданный в наших лабораториях, будет иметь те самые массу и заряд, которые указаны в этой книжечке. Но, взятый сам по себе, этот принцип настолько уродлив, что никто и не подумает, будто вопрос исчерпан. Уродливость этого принципа – в отсутствии простоты и неизбежности. Ведь книжечка содержит тысячи чисел, и любое из них можно изменить, не превратив остальную информацию в глупость. Нет никакой логической формулы, которая устанавливала бы четкую границу между красивой теорией, способной что-то объяснить, и простым перечислением данных, но мы знаем, что эта граница существует, когда мы ее видим: мы требуем простоты и жесткости наших принципов, прежде чем принять их всерьез. Итак, наши эстетические суждения есть не только средство, помогающее нам найти научные объяснения и оценить их пригодность; эти суждения есть часть того, что мы подразумеваем под объяснением.
Иные ученые иногда подшучивают над физиками, занимающимися элементарными частицами, так как сейчас открыто столько так называемых элементарных частиц, что нам приходиться все время таскать с собой упомянутую книжечку, чтобы в нужный момент вспомнить о характеристиках какой-то из них. Но само по себе число частиц несущественно. Как сказал Абдус Салам, природа экономит не на частицах или силах, а на принципах. Важно установить набор простых, экономных принципов, которые объясняли бы, почему частицы такие, какие они есть. Конечно, огорчительно, что до сих пор у нас нет полной теории того типа, которого хотелось бы. Но когда такая теория будет построена, уже будет не очень существенно, сколько сортов частиц или сил она описывает, если только она делает это красиво, как неизбежное следствие простых принципов.
Тот тип красоты, который мы обнаруживаем в физических теориях, очень ограничен. Если только мне удалось правильно схватить суть и выразить ее в словах, речь идет о красоте простоты и неизбежности, о красоте идеальной структуры, красоте подогнанных друг к другу частей целого, красоте неизменяемости, логической жесткости. Такая красота классически строга и экономна, она напоминает красоту греческих трагедий. Но ведь это не единственный тип красоты, известный нам в искусстве. Например, мы не найдем этой красоты в пьесах Шекспира, по крайней мере, если не касаться его сонетов. Часто постановщики шекспировских пьес выкидывают целые куски текста. В экранизации «Гамлета» Лоуренсом Оливье Гамлет не говорит: «О, что за дрянь я, что за жалкий раб!..» И тем не менее пьеса не разрушается, так как шекспировские пьесы не обладают совершенной и экономной структурой, как общая теория относительности или «Царь Эдип»; наоборот, эти пьесы представляют собой запутанные композиции, причем их беспорядочность отражает сложность реальной жизни. Все это составляет часть красоты пьес Шекспира, которая, на мой вкус, более высокого порядка, чем красота пьесы Софокла или красота ОТО. Пожалуй, самые сильные моменты в пьесах Шекспира – это те, когда он полностью пренебрегает канонами греческой трагедии и внезапно вводит в действие комичного простака, какого-нибудь слугу, садовника, продавца смокв или могильщика и делается это как раз перед тем, как главные герои пьесы встречаются со своей судьбой. Несомненно, красота теоретической физики была бы очень дурным образцом для произведений искусства, но так или иначе она доставляет нам радость и служит путеводной нитью.
Есть и еще одно обстоятельство, которое заставляет меня думать, что теоретическая физика – плохой образец для искусств. Наши теории очень закрыты для всеобщего обозрения, причем по необходимости, так как мы вынуждены пользоваться при развитии этих теорий языком математики, не ставшей пока что частью интеллектуального багажа всей образованной публики. Вообще говоря, физики не любят признаваться, что их теории так эзотеричны. С другой стороны, я не один раз слышал, как некоторые художники с гордостью говорили о том, что их картины доступны для понимания только маленькой группе единомышленников, и в качестве подтверждения ссылались на пример физических теорий, вроде общей теории относительности, которые также понятны лишь избранным. Конечно, художники, как и физики, не всегда могут быть понятными широкой публике, однако эзотеризм как самоцель – просто глупость.
Хотя мы ищем теории, красота которых основана на жесткости, которую дают простые основополагающие принципы, все же создание теории – это не просто математический вывод следствий из набора заранее предписанных принципов. Эти принципы часто формулируются в процессе нашего продвижения вперед, иногда специально в такой форме, которая приводит к желаемой нами степени жесткости теории. У меня нет сомнений в том, что одна из причин, по которой Эйнштейн был так удовлетворен собственной идеей об эквивалентности гравитации и инерции, заключалась в том, что этот принцип приводил лишь к одной-единственной достаточно удовлетворительной теории тяготения, а не к бесконечно большому множеству возможных теорий. Получение следствий из определенного набора четко сформулированных физических принципов может оказаться делом сложным или не очень, но именно этому и учат физиков в высшей школе, и именно этим они, вообще говоря, любят заниматься. Формулировка же новых физических принципов – мучительный процесс, и этому, по-видимому, нельзя научить.
Красота физических теорий находит отражение в жестких математических структурах, основанных на простых основополагающих принципах. Поразительно, что даже если принципы оказываются неверными, структуры, обладающие красотой подобного типа, выживают. Хорошим примером является теория электрона Дирака. В 1928 г. Дирак попытался пересмотреть шредингеровскую версию квантовой механики, основанную на волнах частиц, с тем чтобы совместить ее с специальной теорией относительности. Эта попытка привела Дирака к выводу, что электрон должен обладать определенным спином и что Вселенная заполнена ненаблюдаемыми электронами с отрицательной энергией, отсутствие которых в определенной точке наблюдалось бы в лаборатории как наличие электрона с противоположным зарядом, т.е. античастицы электрона. Теория Дирака завоевала необычайный авторитет после открытия в 1932 г. в космических лучах как раз такой античастицы электрона, получившей название позитрона. Эта теория стала ключевой составной частью квантовой электродинамики, развитой и успешно примененной для анализа физических явлений в 30-х и 40-х гг. Однако сегодня мы знаем, что точка зрения Дирака была во многом ошибочной. Правильным способом объединения квантовой механики и специальной теории относительности оказалась не релятивистская версия волновой механики Шрёдингера, как думал Дирак, а более общий формализм, разработанный Гейзенбергом и Паули в 1929 г. и известный под названием квантовой теории поля. В этой теории не только фотон рассматривается как сгусток энергии поля, а именно электромагнитного поля, но и электроны, и позитроны являются сгустками энергии электронного поля, и все другие частицы представляют сгустки энергии различных полей. Почти по случайным причинам дираковская теория электрона приводила к тем же результатам, что и квантовая теория поля, для процессов с участием только электронов, позитронов и фотонов. Но квантовая теория поля является значительно более общей: она может рассматривать процессы типа ядерного бета-распада, которые совершенно непостижимы в рамках теории Дирака[108]. В квантовой теории поля нет никаких специальных требований, чтобы частица имела какой-то определенный спин. Оказалось, что спин электрона как раз такой, какой требует теория Дирака, но есть и другие частицы, с другими спинами, и у них тоже есть античастицы, причем все это не имеет никакого отношения к отрицательным энергиям и связанным с ними рассуждениям Дирака[109]. Однако математический формализм дираковской теории сохранился как существенная часть квантовой теории поля. Его обязаны изучать в любом курсе лекций по современной квантовой теории для старшекурсников. Таким образом, формальная структура теории Дирака пережила смерть принципов релятивистской волновой теории, которым следовал Дирак при построении своей теории.
- Бабочка и ураган. Теория хаоса и глобальное потепление - Мадрид Карлос - Математика
- φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио - Математика
- Введение в теорию риска (динамических систем) - Владимир Живетин - Математика
- Криптография и свобода - Михаил Масленников - Математика
- Математика для любознательных - Яков Перельман - Математика
- Русско-Ордынская империя - Анатолий Фоменко - Математика
- Популярно о конечной математике и ее интересных применениях в квантовой теории - Феликс Лев - Математика / Физика
- Великая Теорема Ферма - Саймон Сингх - Математика
- Вероятность как форма научного мышления - Виктор Лёвин - Математика
- Древние мифы и физика. Алгебра, логика и физика о реальности времени - Александр Мальцев - Математика