Шрифт:
Интервал:
Закладка:
…
Таким образом, гравитационный маневр не только изменяет траекторию аппарата, но и дает выигрыш в энергии. Однако чтобы реализовать «Большой тур», требовалось особое расположение планет, примерно такое, как было в 80-х годах, иначе вся миссия растянулась бы непомерно. Предполагалось, что для посещения пяти внешних планет миссия «Большой тур» потребует нескольких аппаратов: два в 1976-1977 гг. должны были быть направлены последовательно к Юпитеру, Сатурну и затем – к Плутону. Кстати, выбор времени сближения с Плутоном был критичным как никакой другой: орбита Плутона значительно наклонена к эклиптике, а полет с выходом из плоскости эклиптики представляет задачу сложную и дорогостоящую. Два других аппарата в 1979 г. намечалось послать к Юпитеру, Урану и Нептуну. Рассматривался даже вариант с пятью аппаратами.
Однако бюджетные ограничения вскоре заставили изменить, а затем и существенно урезать проект. Лунная экспедиция «Аполлон» обошлась слишком дорого, и проект «Маринер – Юпитер – Сатурн – 77», в дальнейшем переименованный в «Вояджер», оказался намного скромнее «Большого тура». Стоимость проекта составила 250 млн. долларов, или 1/3 намечавшейся стоимости «Большого тура». (На сегодня все расходы по проекту, в которые входят ракеты запуска, весь наземный радиокомплекс и операции сближения, включая сближение с Нептуном, составили 865 млн. долларов.) Новый вариант уже не предусматривал ни таких сложных и многочисленных аппаратов, ни посещения Урана, Нептуна и Плутона. «Вояджер» представляет собой довольно крупное сооружение. Это высокоавтономный робот, оснащенный собственными энергетическими установками, ракетными двигателями, компьютерами, системой радиосвязи, управления и научными приборами для исследования внешних планет. Масса аппарата составляет 815 кг.
Ограничение задач позволило значительно снизить требования к надежности компонентов и стоимости не только бортового, но и наземного оборудования. В самом деле, для радиосвязи на фантастические расстояния (орбита Нептуна – 30 а. е., или 4,5 млрд. км от Земли) требовалось создать сеть гигантских радиотелескопов, каждый из которых представляет очень дорогое сооружение. (Фактически, такая сеть была создана, но намного позднее.) Уже к моменту сближения «Вояджера-2» с Ураном радиотелескопы с диаметром поворотной антенны 64 м для приема сигналов из дальнего космоса были установлены в США, в Испании и в Австралии.
Оставим пока вопрос о том, как «Вояджеру-2» удалось все-таки исследовать Уран и Нептун, и обратимся к рисунку, на котором представлена схема полета Вояджеров. Через полтора года после Юпитера, 12 ноября 1980 г. «Вояджер-1» достиг Сатурна. Чтобы сблизиться с его спутником Титаном, имеющим плотную атмосферу и представляющим особый научный интерес, аппарат прошел сравнительно низко над южным полюсом Сатурна и круто изменил свою траекторию. Сближение с Титаном произошло, как намечалось, но это был конец планетной миссии «Вояджера-1». Аппарат стал все выше подниматься над плоскостью эклиптики. На 1990 г. он ушел «вверх» уже на 19,4 а. е., или почти на 3 млрд. км. Как известно, планетных тел здесь нет.
«Вояджер-2» достиг Сатурна почти на год позже, 25 августа 1981 г. и провел исследования планеты и ее многочисленных спутников. После гравитационного маневра в плоскости эклиптики он был направлен к Урану. Сближение с Ураном произошло 24 января 1986 г. Снова исследования планет и спутников, снова маневр. 24 августа 1989 г. аппарат достиг «последней остановки» – Нептуна. Подобно Титану у Сатурна, спутник Нептуна Тритон давно привлекает внимание исследователей. Последний маневр «Вояджера-2» позволил исследовать Тритон (который, как выяснилось, того стоил). Теперь «Вояджер-2» тоже уходит из Солнечной системы (но в направлении, другом, чем «Вояджер-1»). Несколько слов о научном оснащении аппаратов. Научный комплекс «Вояджеров» позволил (в принципе) одновременно проводить 11 научных экспериментов.
…
Если для спутников «малого каботажа», предназначенных для исследования Меркурия, Венеры, Земли и Марса вполне достаточно фотоэлектрических (солнечных) батарей, то для далеких планет, где низка плотность солнечной радиации, нужны другие источники энергии. На «Вояджерах» установлены три радиоизотопных термоэлектробатареи с эффективностью около 5 %, нагреваемые тепловыделяющими элементами из окиси плутония. Общая мощность такой батареи вначале составляла почти полкиловатта электроэнергии, однако по мере распада плутония мощность падала (как тепловая, так и электрическая). Это сказывалось уже в период сближения с Ураном (когда мощность упала до 400 Вт) и создавало ограничения в выполнении научной программы; например, нельзя было проводить все эксперименты одновременно.
Естественно, не только энергетика определяет возможности аппарата. Множество систем, которые называют «служебными» (а чаще-просто «домашним хозяйством»), позволяют аппарату вести самоконтроль, управлять своим положением, рассчитывать свои действия, посылать и принимать радиосообщения. «Мозг» Вояджера – это два компьютера, образующих так называемую «подсистему полетных данных». Компьютеры могут работать как в дублирующем, так и в независимом режиме. В их функции входит контроль состояния научных приборов и управление ими, сбор и редактирование научной информации перед радиопередачей ее на Землю, контроль и управление положением аппарата и многие другие задачи. Главным достоинством управляющего комплекса «Вояджера», как выяснилось в многолетнем полете, оказалась необычайно гибкая программа, которая не только допускала радикальные изменения в исследовательских планах или в принципах обработки поступающей научной информации, но позволяла также обойти неизбежно возникающие во время длительного путешествия неисправности то в одном, то в другом из многочисленных узлов аппарата, включая даже сами компьютеры. Кстати, в бортовой вычислительной машине «Вояджера-1» отказала одна из систем памяти, но выполнению научных задач это не помешало.
Правильное положение аппарата в пространстве определяет возможность радиосвязи с Землей, так как большая параболическая чаша его антенны диаметром 3,65 м. жестко скреплена с аппаратом. Во время радиосвязи она должна быть точно нацелена на Землю. Компьютеры «узнают» положение аппарата с помощью датчиков Солнца и звезд, которые также используются для навигации. Но этого недостаточно. Необходимо знать положение аппарата на небесной сфере. Разумеется, увидеть аппарат с Земли невозможно, но вместо этого можно использовать телевизионные снимки, получаемые с самого аппарата перед сближением с небесным телом. На них планета и ее спутники видны на фоне звезд с известными координатами. После обработки телевизионных изображений положение аппарата удается определить с очень высокой точностью. Например, у Урана погрешность такого определения составляла 20-25 км. Этот метод называется оптической навигацией. Очень высокую точность дает радионавигация. Для этого методами радиоинтерферометрии по регистрации сигнала радиопередатчика аппарата определяется его положение на небе относительно «маяков Вселенной» – квазаров.
Аппарат может, при необходимости, изменить свое положение. Для этого он оснащен малыми ракетными двигателями (двигателями малой тяги, или верньерными двигателями). Двигатели работают на гидразине, который хранится в топливном баке. Небольшое, контролируемое компьютером количество жидкого гидразина поступает на катализатор, который превращает его в газ, выбрасываемый из сопла двигателя. Реактивная тяга поворачивает аппарат. Топливо используется также в тех случаях, когда необходима коррекция траектории аппарата. В целом, гидразин расходовался так экономно, что после встречи с Ураном в топливном баке оставалось еще около половины запаса (62 кг). Интересно назвать главные причины, которые слегка нарушают параметры движения аппарата. Прежде всего, это гравитационные воздействия планет Солнечной системы на тело, находящееся в свободном полете. Затем – очень малые силы, которые возникают под действием падающего на аппарат солнечного излучения и его собственного теплового излучения. Наконец, это механические воздействия собственных устройств аппарата (поворотной платформы). При сближении с Ураном и Нептуном приходилось исключать даже такие ничтожные воздействия, которые вызывало включение бортового магнитофона. С Земли удается с весьма высокой точностью найти скорость аппарата. Лучевая скорость (проекция скорости на линию визирования) определяется по эффекту Доплера с точностью до 2 см/с при скорости аппарата около 16 км/с. Чувствительность метода так высока, что, например, задолго до сближения с планетой ученые поняли, что принятую массу Урана, заложенную в расчеты, необходимо увеличить на 0,3 %, чтобы привести расчеты в соответствие с наблюдаемыми доплеровскими приращениями.
- СКИФИЙСКАЯ ИСТОРИЯ - ЛЫЗЛОВ ИВАНОВИЧ - История
- Новейшая история еврейского народа. От французской революции до наших дней. Том 2 - Семен Маркович Дубнов - История
- Год 1942 - «учебный». Издание второе - Владимир Бешанов - История
- Завоевание. Английское королевство Франция, 1417–1450 гг. - Джульет Баркер - История
- Полибий и его герои - Татьяна Андреевна Бобровникова - Биографии и Мемуары / История
- Война: ускоренная жизнь - Константин Сомов - История
- СОВЕТСКО-ФИНСКАЯ ВОЙНА - Элоиза Энгл - История
- История Украинской ССР в десяти томах. Том восьмой - Коллектив авторов - История
- Афганистан. Война разведчиков - Виктор Марковский - История
- Война с готами. О постройках - Прокопий Кесарийский - История