Шрифт:
Интервал:
Закладка:
Чтобы лучше познакомиться со структурами, напишем несколько функций, манипулирующих точками и прямоугольниками. Возникает вопрос: а как передавать функциям названные объекты? Существует по крайней мере три подхода: передавать компоненты по отдельности, передавать всю структуру целиком и передавать указатель на структуру. Каждый подход имеет свои плюсы и минусы.
Первая функция, makepoint, получает два целых значения и возвращает структуру point.
/* makepoint: формирует точку по компонентам x и y */
struct point makepoint(int х, int у) {
struct point temp;
temp.x = х;
temp.у = у;
return temp;
}
Заметим: никакого конфликта между именем аргумента и именем элемента структуры не возникает; более того, сходство подчеркивает родство обозначаемых им объектов.
Теперь с помощью makepoint можно выполнять динамическую инициализацию любой структуры или формировать структурные аргументы для той или иной функции:
struct rect screen;
struct point middle;
struct point makepoint(int, int);
screen.pt1 = makepoint(0, 0);
screen.pt2 = makepoint(XMAX, YMAX);
middle = makepoint((screen.pt1.x + screen.pt2.x)/2, (screen.pt1.y + screen.pt2.y)/2);
Следующий шаг состоит в определении ряда функций, реализующих различные операции над точками. В качестве примера рассмотрим следующую функцию:
/* addpoint: сложение двух точек */
struct point addpoint(struct point p1, struct point p2)
{
p1.x += p2.x;
p1.y += p2.y;
return p1;
}
Здесь оба аргумента и возвращаемое значение - структуры. Мы увеличиваем компоненты прямо в р1 и не используем для этого временной переменной, чтобы подчеркнуть, что структурные параметры передаются по значению так же, как и любые другие.
В качестве другого примера приведем функцию ptinrect, которая проверяет: находится ли точка внутри прямоугольника, относительно которого мы принимаем соглашение, что в него входят его левая и нижняя стороны, но не входят верхняя и правая.
/* ptinrect: возвращает 1, если p в r, и 0 в противном случае */
int ptinrect(struct point р, struct rect r) {
return p.x >= r.pt1.x && p.x < r.pt2.x && p.y >= r.pt1.y && p.y < r.pt2.y;
}
Здесь предполагается, что прямоугольник представлен в стандартном виде, т.е. координаты точки pt1 меньше соответствующих координат точки pt2. Следующая функция гарантирует получение прямоугольника в каноническом виде.
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))
/* canonrect: канонизация координат прямоугольника */
struct rect canonrect(struct rect r)
{
struct rect temp;
temp.pt1.x = min(r.pt1.x, r.pt2.x);
temp.ptl.y = min(r.pt1.y, r.pt2.у);
temp.pt2.x = max(r.pt1.x, r.pt2.x);
temp.pt2.y = max(r.pt1.y, r.pt2.y);
return temp;
}
Если функции передается большая структура, то, чем копировать ее целиком, эффективнее передать указатель на нее. Указатели на структуры ничем не отличаются от указателей на обычные переменные. Объявление
struct point *pp;
сообщает, что pp - это указатель на структуру типа struct point. Если pp указывает на структуру point, то *pp - это сама структура, а (*pp).x и (*pp).y - ее элементы. Используя указатель pp, мы могли бы написать
struct point origin, *pp;
pp =&origin;
printf("origin: (%d,%d)n", (*pp).x, (*pp).y);
Скобки в (*pp).x необходимы, поскольку приоритет оператора . выше, чем приоритет *. Выражение *pp.x будет проинтерпретировано как *(pp.x), что неверно, поскольку pp.x не является указателем.
Указатели на структуры используются весьма часто, поэтому для доступа к ее элементам была придумана еще одна, более короткая форма записи. Если p - указатель на структуру, то
р-›элемент-структуры
есть ее отдельный элемент. (Оператор -› состоит из знака -, за которым сразу следует знак ›.) Поэтому printf можно переписать в виде
printf("origin: (%d,%d)n", pp-›х, pp-›y);
Операторы. и -› выполняются слева направо. Таким образом, при наличии объявления
struct rect r, *rp = &r;
следующие четыре выражения будут эквивалентны:
r.pt1.x rp-›pt1.x (r.pt1).x (rp-›pt1).x
Операторы доступа к элементам структуры . и -› вместе с операторами вызова функции () и индексации массива [] занимают самое высокое положение в иерархии приоритетов и выполняются раньше любых других операторов. Например, если задано объявление
struct {int len; char *str;} *p;
то
++p-›len
увеличит на 1 значение элемента структуры len, а не указатель p, поскольку в этом выражении как бы неявно присутствуют скобки: ++(p-›len). Чтобы изменить порядок выполнения операций, нужны явные скобки. Так, в (++р)-›len, прежде чем взять значение len, программа прирастит указатель p. В (р++)-›len указатель p увеличится после того, как будет взято значение len (в последнем случае скобки не обязательны).
По тем же правилам *p-›str обозначает содержимое объекта, на который указывает str; *p-›str++ прирастит указатель str после получения значения объекта, на который он указывал (как и в выражении *s++), (*p-›str)++ увеличит значение объекта, на который указывает str; *p++-›str увеличит p после получения того, на что указывает str.
6.3 Массивы структур
Рассмотрим программу, определяющую число вхождений каждого ключевого слова в текст Си-программы. Нам нужно уметь хранить ключевые слова в виде массива строк и счетчики ключевых слов в виде массива целых. Один из возможных вариантов - это иметь два параллельных массива:
char *keyword[NKEYS];
int keycount[NKEYS];
Однако именно тот факт, что они параллельны, подсказывает нам другую организацию хранения - через массив структур. Каждое ключевое слово можно описать парой характеристик
char *word;
int count;
Такие пары составляют массив. Объявление
struct key {
char *word;
int count;
} keytab[NKEYS];
объявляет структуру типа key и определяет массив keytab, каждый элемент которого является структурой этого типа и которому где-то будет выделена память. Это же можно записать и по-другому:
struct key {
char *word;
int count;
};
struct key keytab[NKEYS];
Так как keytab содержит постоянный набор имен, его легче всего сделать внешним массивом и инициализировать один раз в момент определения. Инициализация структур аналогична ранее демонстрировавшимся инициализациям - за определением следует список инициализаторов, заключенный в фигурные скобки:
struct key {
char *word;
int count;
} keytab[] = {
"auto", 0,
"break", 0,
"case", 0,
"char", 0,
"const", 0,
"continue", 0,
"default", 0,
/*…*/
"unsigned", 0,
"void", 0,
"volatile", 0,
"while", 0
};
Инициализаторы задаются парами, чтобы соответствовать конфигурации структуры. Строго говоря, пару инициализаторов для каждой отдельной структуры следовало бы заключить в фигурные скобки, как, например, в
{"auto", 0},
{"break", 0},
{"case", 0},
…
Однако когда инициализаторы - простые константы или строки символов и все они имеются в наличии, во внутренних скобках нет необходимости. Число элементов массива keytab будет вычислено по количеству инициализаторов, поскольку они представлены полностью, а внутри квадратных скобок "[]" ничего не задано.
Программа подсчета ключевых слов начинается с определения keytab. Программа main читает ввод, многократно обращаясь к функции getword и получая на каждом ее вызове очередное слово. Каждое слово ищется в keytab. Для этого используется функция бинарного поиска, которую мы написали в главе 3. Список ключевых слов должен быть упорядочен в алфавитном порядке.
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#define MAXWORD 100
int getword(char *, int);
int binsearch(char *, struct key *, int);
/* подсчет ключевых слов Си */
main()
{
int n;
char word[MAXWORD];
while(getword(word, MAXWORD) != EOF)
- QT 4: программирование GUI на С++ - Жасмин Бланшет - Программирование
- Изучай Haskell во имя добра! - Миран Липовача - Программирование
- Adobe Flash. Создание аркад, головоломок и других игр с помощью ActionScript - Гэри Розенцвейг - Программирование
- Python для детей. Анимация с черепашьей графикой - Виктор Рабинович - Прочая детская литература / Программирование
- Программист-фанатик - Чед Фаулер - Программирование
- Новое в зарплатном учете в 2023 году: лайфхаки бухгалтера в 1С - Компания СервисКлауд - Программирование / Финансы
- Устойчивый веб-дизайн - Jeremy Keith - Прочая околокомпюьтерная литература / Интернет / Программирование
- Создание электронных книг из сканов. DjVu или Pdf из бумажной книги легко и быстро - "TWDragon" - Программирование
- Энциклопедия разработчика модулей ядра Linux - Ори Померанц - Программирование
- Хочу в геймдев! Основы игровой разработки для начинающих - Вячеслав Николаевич Уточкин - Программирование