Шрифт:
Интервал:
Закладка:
CHESS158.GIF
CHESS159.GIF
CHESS160.GIF
CHESS161.GIF
и сетку диагональную (160). В узлах, отмеченных на сетках, окажутся определенные цифры. Их сумма в любом квадрате из 2, 4, 6 и 8 полей в стороне всегда равна 130. Но есть еще особый случай: квадрат с пятью полями! (161) На первом ряду он отмечен полем е1 (на котором, заметим, поставлен белый король!). Это как бы золотое сечение: 5 полей и 3 поля слева и справа в горизонтальном ряду дают суммы два раза по 130! Такую же сумму 130 дают и узловые поля пятипольного квадрата, где бы он ни был расположен в "насике". Диагональная сетка выражена двумя прямоугольниками, - расположенными крест-накрест в каждой четверти (квадрата) "насика". Прямоугольники складываются из двух квадратов каждый. Отмеченные на них узлы приходятся на цифры, которые для каждого диагонального квадрата дают те же 130!
- Преклоняюсь перед волшебством. Но при чем тут шахматы?
CHESS162.GIF
В том-то и дело, что не только шахматы. Сетка-то напоминает кристаллическую решетку! Но начнем с шахмат. С расстановки фигур (162). Цифры на полях a1, h1, a8 и h8 в сумме дают 130! Это для ладей! Но то же самое и для слонов: b1, f1, b8, f8, и для коней: b1, g1, b8, g8, и, наконец, для короля и ферзя суммы цифр опять будут 130! Все фигуры занимают целиком ряд с константой 260, точно так же, как и каждый из рядов пешек.
- Случайность, - сделанным равнодушием заметил я. - Просто фигуры поставлены в ряд, где цифры подобраны.
- Какая же это случайность, когда можно рассмотреть ходы фигур, а не только их первоначальное положение? Король! Вы же заметили, что каждые четыре поля в любом квадратике доски дают сумму цифр 130. А если поставить рядом два таких Квадратика, можно и со сдвигом на одну клетку (или даже на две)?
В восьми полях будет сумма 260! А что это за восемь полей (163)?
CHESS163.GIF
Это же поля, которые может последовательно занять король при своих семи ходах! Так что и ему в движении присуща та же константа. Так ведь и с другими фигурами та же история!
- Вы так думаете?
CHESS164.GIF
- Знаю! Ферзь. Поставим его в угол на a1 (164). Восемь последовательных полей, которые он займет при семи ходах в одном направлении, дадут сумму цифр 260, как в полной диагонали.
А если она спиральная, то начинать можно в любом месте "насика" и двигаться в любую сторону. Более того! Если ферзь начнет путешествовать по узлам диагональной сетки, похожей на кристаллическую решетку, то может обойти получившиеся фигуры так, чтобы пройти оба квадрата по восьми полям, что в сумме цифр опять даст 260. Может ферзь пройти и другими путями, которые видны на диаграмме. Ну как?
- Совпадение.
CHESS165.GIF
- Тогда что вы скажете о ладьях (165)? Двигаясь навстречу друг другу в любом месте "насика", они займут весь ряд с его константой 260. Современные ладьи дают тот же результат и без встречного движения. Причем ладья может начинать с любого поля доски.
- Уже доски?
- А что вы скажете о слонах, которые, двигаясь по спиральным диагоналям навстречу друг другу, опять-таки дают константу? Современные ходы лишь облегчают получение константы.
Например: 1. Ch8, 2. Сb2, 3. Cg7, 4. СсЗ, 5. Cf6, 6: Cd5, 7. Се5.
Остались еще конь и пешки!
- Я вас понял. В старом анекдоте во время экзамена поп старался выдавить из семинариста слово "чудо" и спрашивал: "Что это такое, когда человек упал с колокольни и остался жив?"
"Случайность", - ответил растерявшийся семинарист. Упрямый поп все наводил семинариста на верный ответ: "Ну, а если второй раз человек упал с колокольни и остался жив? Что это такое?"
"Совпадение, ваше преподобие", - еле вымолвил вспотевший семинарист. Поп рассвирепел, затряс гривой: "А ежели в третий раз человек упал с колокольни и жив остался, что это такое? Ответствуй!" Тут семинарист выпрямился и отчеканил: "Привычка!"- и стал несостоявшимся попиком.
- Так вы хотите сказать, что с конем и пешкой это уже "привычка"? вскипел Михаил Николаевич.
- Вы все хотите, чтобы я произнес "чудо"?- пытался я улыбкой успокоить его.
- Так я вам покажу нечто непривычное. В пифагорову теорему верите?
- Я кивнул.
- Неверна она тут для коневой диагонали!
- Это как же? Ее как будто тоже в Индии доказали.
И я вспомнил это доказательство (l08, 109).
- Совершенно верно. Как известно, Пифагор бывал в Индии и мог узнать о доказательстве, принесенном из Шамбалы.
- Опять Шамбала?
CHESS166.GIF
- Конечно! Все, что я рассказывал, - все из Шамбалы. Так вот! Конь! Коневая диагональ (166), проведенная через поля, по которым пройдет конь, затронет за один оборот спирали четыре поля и восемь - за два, когда квадрат будет пройден от края до края, сумма цифр при этом будет 130+130=260! И что самое интересное, если строить после трех ходов коня треугольник на его диагонали, как на гипотенузе, с катетами на сторонах квадрата, то сумма цифр гипотенузы будет просто равна сумме цифр малого катета. Вот вам и Пифагор!
- Так то сумма цифр, а не длина! Это что-то новое.
- Новое - значит непривычное. А вы говорите "привычка"!
CHESS167.GIF
Теперь пешки! Выстроенные в ряд, они дают константу. Но если они передвинутся и две из них побьют в разные стороны, то новый ряд снова даст константу (167). Движение же центральной пешки (168) - d3-de-ed-d6-d7-d8 дает ту же сумму цифр 260.
CHESS168.GIF
Или черная пешка а7. Она идет по полям а6-а5-а4-аЗ-Ь2, и теперь взятие или на а1 или на с1. В одном случае сумма цифр будет 259, а в другом 261. В среднем та же константа 260, хотя пешки проходят не восемь, а лишь семь полей.
Я еще не признался, не произнес слово "чудо", но оно могло бы произойти, если бы Михаил Николаевич открыл тайну алгоритма. Но он не скрывал ее (если знал!).
Увлеченный моей фантазией, он уверял меня, что махатм сказал Рериху много больше, чем я вообразил.
Но этого не записано в дневнике.
- Тем не менее в шахматах отражены не только математические, но и биологические константы. Одно сходство слов: "шахматы" и "махатмы" чего стоит!
- Ну, это вы уж слишком!
- Нисколько! Число возможных первых ходов фигур и пешек равно числу аминокислот - 20. Если разделить число полей центральных квадратов пополам (169), то получится ряд: 2-8-18-32.
CHESS169.GIF
Это равно числу электронов на устойчивых орбитах (в физике!).
Махатмы все знали, все! 2, 8, 18, 32 и обратно 32, 18, 8, 2 - строение оболочек элементов (химия!).
- Почему же этого нет в дневнике?
- Потому что автор записи ничего в этом не понимал.
- А что это за сакраментальные цифры 260 и 64?
- 64! Это 4 в кубе! 4 - символизирует аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). Для 20 аминокислот, требуемых человеку, нужны 64 тройки оснований, так как код их триплетен.
Необходимо 4^3=64. Кстати, 260=4х65, а 65 - сумма угловых цифр по диагоналям четырех квадратов "насика". 1+64, 28+37, 40+25, 61+4! И еще... - Михаила Николаевича уже невозможно было остановить. Он рисовал в "насике" спираль (170).
(adsbygoogle = window.adsbygoogle || []).push({});- Камень Шамбалы, или Золотой век - Александр Саверский - Научная Фантастика
- Принцип надежности - Игорь Росоховатский - Научная Фантастика
- Солнечный блик или знак Шамбалы - Лев Мельников - Научная Фантастика
- Собрат машинам - Ричард Матесон - Научная Фантастика
- Рассказы - Александр Казанцев - Научная Фантастика
- Том 2. Сильнее времени - Александр Казанцев - Научная Фантастика
- Аренида - Александр Казанцев - Научная Фантастика
- Без вариантов - Алексей Бергман - Научная Фантастика
- Планета в подарок - Джон Уиндэм - Научная Фантастика
- Спустя тысячелетие. Лунная дорога - Александр Казанцев - Научная Фантастика