Шрифт:
Интервал:
Закладка:
где v1, v2 — скорости, которые шар приобретает в конце движения по наклонной плоскости (ибо h ~ t2, a v ~ t и h ~ v2). С другой стороны,
s1/s2=v1t/v2t=v1/v2; s12/s22=v12/v22. (2)
Комбинируя (1) и (2), получаем:
s1/s2 = h1/h2
и
Вычисленные Галилеем горизонтальные пути для высот, равных 600, 800 и 1000 пунти, оказались равными соответственно 1131, 1306 и 1460 пунти, в то время как его собственный эксперимент дал для этих величин значения 1172, 1328 и 1500 пунти. Столь близкое совпадение данных эксперимента и результатов расчета дало возможность Галилею утверждать впоследствии, что движение по горизонтали сохраняется бесконечно долго и является равномерным. Наряду с вычислениями в документе f 116 содержится рисунок Галилея, изображающий траектории движения шара в его опытах. Без сомнения, эти кривые являются параболами, что подтверждается дальнейшими его записями.
Галилею легко было математически вывести параболическую форму траектории, поскольку он хорошо был знаком с параболами: его деятельность началась с изучения центра тяжести параболоидов вращения. В документе, хранящемся под номером f117 тома 72 его рукописей, приводится такой геометрический вывод: он рисует пересекающиеся горизонтальную и вертикальную прямые, затем откладывает по горизонтали равные отрезки, а по вертикали — отрезки, соответствующие квадратам. Проводя затем соответствующие горизонтальные и вертикальные прямые, он получает точки пересечения, которые и определяют параболу.
Итак, записи Галилея, относящиеся к 1608—1609 гг., дают нам основание утверждать, что к этому времени Галилей вывел теоретически и доказал экспериментально факт движения по параболе для тела, брошенного горизонтально. Подтверждение тому, что Галилей в действительности проводил эксперименты и интерпретация его записей, предложенная Дрейком, справедлива, мы находим в других документах, относящихся к этому же времени.
Дело в том, что данные, полученные Галилеем в одном из опытов, зафиксированных в документе f116, его не удовлетворили. Несколькими годами ранее он теоретически установил правило: если тело движется по наклонной плоскости в течение некоторого времени, а затем, приобретя горизонтальную скорость, падает, то путь, пройденный в свободном падении за то же время по горизонтали, будет вдвое больше первоначального пути вдоль наклонной плоскости. Чтобы проверить это правило, Галилей пускал шар с высоты 828 пунти на наклонной плоскости и отмечал путь, пройденный шаром по горизонтали в свободном падении также с высоты 828 пунти. Так как угол наклона плоскости равнялся 30°, он был вправе ожидать, что, согласно его правилу, путь этот должен был бы быть равен 2x868, т. е. 1656 пунти, однако в опыте он получил значение 1340 пунти (при угле 30° высота вдвое меньше длины наклонной плоскости, следовательно, вдвое меньшее время требуется шару для падения по высоте, чем вдоль плоскости; поэтому, согласно правилу Галилея, при высоте плоскости, равной 828 пунти, шар пройдет по ней расстояние 1656 пунти за вдвое большее время, чем то, за которое он упадет затем на пол с высоты, также равной 828 пунти, пройдя по горизонтали расстояние, также равное 1656 пунти).
Неудовлетворенный расхождением эксперимента (1340 пунти) и теории (1656 пунти), Галилей, по-видимому, приписал его влиянию дефлектора, т. е. закругления, с помощью которого шару придается горизонтальное направление, и решил провести опыты без дефлектора. В действительности ошибка определялась тем, что для тяжелого бронзового шара, который использовался в опытах Галилеем, не справедлива в точности пропорциональность времен отношению высоты и длины наклонной плоскости, так как лишь 5/7 потенциальной энергии шара превращается в кинетическую энергию горизонтального движения, а 2/5 превращается в кинетическую энергию вращения. Но Галилей этого знать не мог и решил обойтись без дефлектора. Запись этих опытов с наклонной плоскостью, где шар, прокатившись по плоскости, падал под углом к горизонту, содержится в документе под номером f114 того же 72 тома галилеевских рукописей, хранящихся в Национальной библиотеке во Флоренции.
В этом отрывке содержится лишь запись экспериментальных данных, так как Галилей еще не знал, как рассчитывается путь, пройденный по горизонтали, для тела, брошенного под углом к горизонту. Галилей приводит лишь ряд цифр, обозначающих величину горизонтального пути, пройденного шаром при падении с различных высот. В 1975 г. Стиллман Дрейк и Джеймс Маклечлан повторили эксперименты Галилея и получили прекрасное совпадение с результатами Галилея [17].
Эти данные убедительно доказывают, что Галилей уделял большое внимание эксперименту, тщательно продумывал опыты и рассматривал эксперимент как необходимое подтверждение теории. Опыты, проведенные им в 1608—1609 гг., послужили экспериментальной основой его представления об инерциальном движении, позволив ему сделать одновременно вывод, что траекторией горизонтально брошенного снаряда является парабола.
4
Великий Кеплер научил людей «измерять небеса». И почти одновременно с выходом в свет его «Новой астрономии» в истории науки произошло другое замечательное событие: Галилей направил телескоп на звездное небо, началась новая эпоха в наблюдательной астрономии, которая непредсказуемо расширила наши представления о Вселенной.
Изобретение телескопа, относящееся, по-видимому, к концу первого десятилетия XVII в., принято считать случайным открытием. Таким оно и было, если под этим понимать, что человек, первым построивший телескоп, не намеревался с его помощью наблюдать звездное небо. Но можно посмотреть на это событие и с другой стороны, и тогда в появлении телескопа можно увидеть закономерность.
Дело в том, что конец XVI и начало XVII в.— это период, когда в среде людей, так или иначе связанных с научными исследованиями, все сильнее обнаруживается стремление сделать науку полезной. Мысль о том, что результаты научных исследований могут и должны служить основой улучшения условий человеческого существования,— один из главных результатов эпохи Возрождения. К такому выводу приводили различные интеллектуальные тенденции. Гуманистическая традиция прославляла ученого-ремесленника, отбросившего бесплодные схоластические упражнения ради реального дела. Наука и практика в рамках этой традиции рассматривались как взаимосвязанные и взаимодополняющие области человеческой деятельности. Ярким примером этому служит личность Леонардо, соединявшего в себе гений философа и инженера, математика и живописца. Он говорил, что науки бессмысленны и полны ошибок, если они возникли не из эксперимента — «матери всякой определенности» — и если они не заканчиваются экспериментом, ясным и доказательным. С другой стороны, только наука дает определенность и силу. Те, кто полагаются на практику без науки, подобны морякам, отправляющимся в плавание без руля и компаса. С этим мнением Леонардо перекликаются взгляды находившегося в русле герметической традиции Джован Батисты Порты, рассматривавшего науку как магическое искусство. Он говорил, что идеалом человека является личность, которая делает, чтобы знать, и знает, чтобы делать [18, с. 41].
Представление об ученом как о homo faber в значительной степени обусловило тот факт, что ремесло и искусство, ремесло и наука стали параллельными занятиями для многих интеллектуалов. Более того, научный инструмент рассматривался и как произведение искусства, и как плод науки. Выполненный ремесленником, он повышал общественный престиж изготовившего его мастера, и поэтому изготовление научных инструментов стало одним из престижных и популярных занятий. Здесь можно вспомнить Тихо Браге, украсившего фреской свой знаменитый гигантский квадрант, или Региомонтана, посвятившего много времени усовершенствованию типографской техники.
Итак, изобретение телескопа было подготовлено всей тенденцией интеллектуального развития эпохи. И хотя мы не знаем точно имени изобретателя, этому человеку, как утверждал Гюйгенс в своей «Диоптрике», необходимо должен был помочь случай. Среди претендующих на честь открытия телескопа несколько имен из четырех стран — Англии, Италии, Голландии и Германии, и каждая из них пытается приписать честь открытия своему соотечественнику.
Свойство выпуклых прозрачных тел увеличивать видимые через них предметы было известно еще в древности, во всяком случае, Роджер Бэкон уже упоминает об этом, добавляя, что это свойство выпуклых стекол может использоваться людьми для исправления слабого зрения. В XIV в. очки получили довольно широкое распространение. Методом проб и ошибок научились изготовлять очки для дальнозорких и близоруких, поэтому не так уж удивительно, что к началу XVII в. пришла очередь телескопа.
- Ошибка Коперника. Загадка жизни во Вселенной - Калеб Шарф - Прочая научная литература
- Жизнь науки - С. Капица - Прочая научная литература
- Всё переплетено. Как искусство и философия делают нас такими, какие мы есть - Альва Ноэ - Прочая научная литература / Науки: разное
- Голубая точка. Космическое будущее человечества - Карл Саган - Прочая научная литература
- Преподаватель современного вуза: компетентностная модель - Леонид Харченко - Прочая научная литература
- Исповедь. О жизни. Что такое искусство? - Толстой Лев Николаевич - Прочая научная литература
- «Дни науки» факультета социотехнических систем. Выпуск II. Часть I - А. Морозов - Прочая научная литература
- «Дни науки» факультета социотехнических систем. Выпуск II. Часть ІI - Коллектив авторов - Прочая научная литература
- Удивительная космология - Лев Шильник - Прочая научная литература
- Бог, Адам и общество - Дмитрий Гурьев - Прочая научная литература