Шрифт:
Интервал:
Закладка:
В то же время все эти рефлексы могут быть на некоторое время подавлены за счет активности коры больших полушарий, которая может взять на себя управление дыханием. Такое дыхание называется произвольным. В частности, оно используется при выполнении упражнений дыхательной гимнастики, при нырянии, при попадании в условия загазованности или задымленности и в других случаях, когда требуется адаптация к редко встречающимся факторам. Однако при произвольной задержке дыхания рано или поздно дыхательный центр принимает на себя управление этой функцией и выдает императивный стимул, с которым сознание справиться не может. Это бывает тогда, когда достигнут порог чувствительности дыхательного центра. Чем более зрел и более физически тренирован организм, тем выше этот порог, тем большие отклонения в гомеостазе может выдержать дыхательный центр. Специально натренированные ныряльщики, например, способны задерживать дыхание на 3–4 мин, иногда даже на 5 мин — время, необходимое им для спуска на значительную глубину под воду и поиска там нужного объекта. Так, например, добывают морской жемчуг, кораллы, губку и некоторые другие «дары моря». У детей сознательное управление дыхательным центром возможно после прохождения полуростового скачка, т. е. после 6–7 лет, обычно именно в этом возрасте дети приучаются нырять и плавать теми стилями, которые связаны с задержкой дыхания (кроль, дельфин).
Момент рождения человека — это момент его первого вдоха. Ведь в утробе матери функция внешнего дыхания не могла осуществляться, а потребность в кислороде обеспечивалась за счет его поставки через плаценту из материнского организма. Поэтому, хотя к моменту рождения функциональная система дыхания в норме полностью созревает, она обладает целым рядом особенностей, связанных с актом рождения и условиями жизни в период новорожденности. В частности, активность дыхательного центра у детей в этот период сравнительно низкая и неустановившаяся, поэтому нередко первый вдох ребенок делает не сразу после выхода из родовых путей, а через несколько секунд или даже минут. Иногда для инициации первого вдоха достаточно простого шлепка по ягодицам ребенка, но иногда апноэ (отсутствие дыхания) затягивается, и если это длится несколько минут, может перейти в состоянии асфиксии. Будучи достаточно типичным осложнением процесса родов, асфиксия крайне опасна своими последствиями: кислородное голодание нервных клеток может привести к нарушению их нормальной работы. Вот почему нервная ткань новорожденных гораздо менее чувствительна к недостатку кислорода и избытку кислых продуктов метаболизма. Тем не менее длительная асфиксия (десятки минут) ведет к значительным нарушениям деятельности центральной нервной системы, которые могут сказываться иногда в течение всей последующей жизни.
К возрасту 2–3 лет чувствительность дыхательного центра у детей резко возрастает и становится выше, чем у взрослых. В дальнейшем она постепенно снижается, вплоть до 10–11 лет. В подростковом возрасте вновь отмечается временное увеличение чувствительности дыхательного центра, которое устраняется с завершением пубертатных процессов.
Возрастные изменения структуры и функциональных возможностей органов дыхания. С возрастом все анатомические составляющие системы дыхания увеличиваются в размерах, что и определяет во многом направленность функциональных возрастных изменений. Абсолютные характеристики анатомических просветов трахеи и бронхов, бронхиол, альвеол, общей емкости легких и ее составляющих увеличиваются приблизительно пропорционально увеличению площади поверхности тела. В то же время более высокая интенсивность метаболических, в том числе окислительных, процессов в раннем возрасте требует повышенного поступления кислорода, поэтому относительные показатели системы дыхания отражают значительно большее его напряжение у детей раннего возраста — примерно до 10–11 лет. Однако, несмотря на явно меньшую экономичность и эффективность, дыхательная система у детей работает столь же надежно, как и у взрослых. Этому благоприятствует, в частности, большая диффузионная способность легких, т. е. лучшая проницаемость альвеол и капилляров для молекул кислорода и углекислого газа.
Транспорт газов кровьюПоступивший в организм через легкие кислород должен быть доставлен к его потребителям — всем клеткам тела, находящимся иногда на расстоянии десятков сантиметров (а у некоторых крупных животных — нескольких метров) от «источника». Процессы диффузии не способны транспортировать вещество на такие расстояния с достаточной для потребностей клеточного метаболизма скоростью. Наиболее рациональным способом транспортировки жидкостей и газов является использование трубопроводов. Человек в своей хозяйственной деятельности давно и широко использует трубопроводы везде, где требуется постоянное перемещение значительных количеств воды, нефти, природного газа и многих других веществ. Для того чтобы противостоять силе гравитации, а также преодолеть силу трения в трубах, по которым течет жидкость, человек изобрел насос. А чтобы жидкость текла только в нужном направлении, не возвращаясь обратно в момент снижения напора в трубопроводе, были изобретены клапаны — устройства, похожие на двери, открывающиеся только в одну сторону.
Совершенно так же устроена и главная транспортная система человеческого организма — система кровообращения. Она состоит из труб-сосудов, насоса-сердца и многочисленных клапанов, которые обеспечивают однонаправленность движения крови через сердце и не допускают обратного тока крови в венах. Разветвляясь на мельчайшие трубочки — капилляры, кровеносные сосуды доходят практически до каждой клетки, снабжая их питательными веществами и кислородом и забирая продукты их жизнедеятельности, которые нужны другим клеткам или от которых организму необходимо избавиться. Система кровообращения у млекопитающих и человека представляет собой замкнутую сеть сосудов, через которую проходит единый ток крови, обеспечиваемый циклическим сокращением сердечной мышцы. Поскольку задача кислородного обеспечения клеток стоит первой в ряду жизненно важных задач, система кровообращения высших животных и человека специально приспособлена к наиболее эффективному газообмену в воздушной среде. Это обеспечивается разделением замкнутого сосудистого трубопровода на два изолированных круга — малый и большой, первый из которых обеспечивает газообмен между кровью и окружающей средой, а второй — между кровью и клетками тела.
Малый и большой круги кровообращения (рис. 24). Артериями называются те сосуды, которые несут кровь от сердца к органам и тканям. Они имеют прочную и довольно толстую стенку, которая должна выдерживать большие давления, создаваемые работой сердца. Постепенно разветвляясь на все более мелкие сосуды — артериолы и капилляры — артерии приносят кровь ко всем тканям. Выносящие кровь из тканей сосуды называются венами. Они формируются по мере слияния и укрупнения более мелких сосудов — капилляров и венул. Вены не отличаются мощностью своих стенок и легко спадаются, если в них нет крови, поскольку им не приходится сталкиваться с большим кровяным давлением. Чтобы ток крови не мог идти в обратном направлении, в венах имеются специальные клапаны, задерживающие кровь, если что-то заставляет ее двигаться в обратном направлении. Благодаря такой конструкции вены, протекающие через скелетные мышцы, работают в качестве дополнительных насосов: сокращаясь, мышцы выталкивают из вен кровь, а расслабляясь, позволяют новой порции крови войти в вены. Поскольку движение крови в них может быть только в одном направлении — к сердцу — такой «мышечный насос» вносит значительный вклад в кровообращение при мышечной нагрузке.
Малый круг кровообращения начинается от правого желудочка, из которого выходит легочная артерия. Практически сразу она делится на два потока — к правому и левому легкому. Достигнув легких, легочные артерии разделяются на множество капилляров, тончайшие из которых омывают отдельные легочные пузырьки (альвеолы). Именно здесь происходит обмен газами между кровью и воздухом, находящимся в альвеолах. Для облегчения газообмена легочные капилляры состоят всего из одного слоя клеток.
Рис. 24. Схема кровообращения
В отличие от всех других артерий организма, легочные артерии несут в себе бедную кислородом и насыщенную углекислым газом кровь. Такая кровь называется «венозной», поскольку она течет в венах всего тела (за исключением легочных вен). Эта кровь уже прошла по сосудам большого круга кровообращения, отдала содержавшийся в ней кислород и собрала углекислоту, от которой нужно избавиться в легких.
- Доброта - Александр Иванович Алтунин - Менеджмент и кадры / Публицистика / Науки: разное
- Академик Г.А. Николаев. Среди людей живущий - Сергей Александрович Жуков - Биографии и Мемуары / Воспитание детей, педагогика / Науки: разное
- Мудрость - Александр Иванович Алтунин - Менеджмент и кадры / Публицистика / Науки: разное
- Общая психопатология. Том 1 - Евгений Васильевич Черносвитов - Культурология / Периодические издания / Науки: разное
- Главные истины освободившийся души - Виолетта Геннадьевна Кучма - Науки: разное
- Интеллигентность (фрагмент) - Александр Иванович Алтунин - Психология / Науки: разное
- Повесть Гоголя «Портрет» - Александр Иванович Алтунин - Менеджмент и кадры / Публицистика / Науки: разное
- Электроника для начинающих (2-е издание) - Чарльз Платт - Радиотехника / Науки: разное
- Тайфун Истины – прелюдия непроизносимых тайн. Космическая Мать - Владимир Бертолетов - Афоризмы / Прочая религиозная литература / Науки: разное
- Османская цивилизация - Юрий Ашотович Петросян - Науки: разное / История