Шрифт:
Интервал:
Закладка:
Именно этим свойством обычного поршневого авиационного двигателя объясняется то, что он перестал удовлетворять требованию непрерывного роста скорости полета, характерному для современной авиации.
Действительно, мощность, потребная для полета данного самолета, очень быстро растет при увеличении скорости полета, пропорционально кубу этой скорости. Значит, при увеличении скорости полета в два раза потребная мощность вырастет соответственно в восемь раз. Еще значительнее становится рост потребной мощности при приближении скорости полета к скорости звука, т. е. скорости, с которой звук распространяется в воздухе (немногим более 1200 км/час вблизи земли), что объясняется дополнительным сопротивлением, связанным с явлением сжимаемости воздуха при этих скоростях.
Установка на самолетах все более мощных двигателей приводит лишь к незначительному увеличению скорости полета. Более мощные двигатели оказываются и более тяжелыми (вес двигателя увеличивается почти пропорционально его мощности), а также большими по размерам, вследствие чего для их установки требуются и большие по размерам самолеты. Но это в свою очередь увеличивает мощность, потребную для полета с данной скоростью.
Выход из этого заколдованного круга был найден применением двигателей принципиально иного типа — двигателей прямой реакции в частности, ракетных. Поэтому не без основания говорят что применение реактивных двигателей в авиации представляет собой настоящую техническую революцию.
Ракетный двигатель в смысле развиваемой им мощности ведет себя совсем иначе, чем, например, поршневые двигатели внутреннего сгорания.
B этом легко убедиться.
Как известно, мощность — это работа, произведенная за секунду, работа же есть действие силы на некотором пути. Поэтому величина работы определяется произведением силы на пройденный в направлении ее действия путь, а мощность соответственно равна произведению силы на скорость. Если мощность измерять в лошадиных силах, то, как известно, величину секундной работы в килограммометрах нужно еще разделить на 75, так как 1 л. с. = 75 кгм/сек; таким образом:
Чему же равна мощность ракетного двигателя? Так как реактивная сила, т. е. тяга, развиваемая двигателем, от скорости передвижения не зависит, то мощность ракетного двигателя оказывается прямо пропорциональной скорости полета.
Когда двигатель неподвижен — например, испытывается на станке, — его мощность равна нулю, несмотря на то, что тяга, развиваемая двигателем, может быть при этом очень велика. Мощность становится значительной лишь при больших скоростях передвижения.
Это свойство ракетного двигателя характеризует его как двигатель специфически транспортный; мало того, как двигатель для аппаратов, передвигающихся с очень большими скоростями, возможными лишь в воздухе и вне пределов атмосферы, т. е. двигатель для самолетов, снарядов, ракет.
На малых скоростях ракетный двигатель развивает весьма незначительную мощность, но зато при увеличении скорости мощность возрастает и может достигать значений, недосягаемых для других тепловых двигателей. Это обстоятельство позволяет получить с помощью ракетного двигателя скорость полета значительно большую, чем с помощью обычных (поршневых) авиационных двигателей.
Как велика может быть мощность ракетного двигателя, видно из следующего примера, относящегося к одной дальнобойной ракете.
На этой ракете установлен ракетный двигатель (он будет описан подробно в разделе о жидкостно-реактивных двигателях), развивающий тягу в 25 тонн. При запуске ракеты, когда скорость ее равна нулю, мощность двигателя также равна нулю. Но когда ракета, примерно через 1 мин. после старта, достигает высоты около 40 км, ее скорость становится очень большой, порядка 1500 м/сек (около 5500 км/час). Подсчитаем по нашей формуле мощность, которую развивает двигатель в этот момент:
Конечно, такую колоссальную мощность (полмиллиона лошадиных сил!) не в состоянии развить ни один тепловой двигатель при тех размерах и весе, которые имеет двигатель этой ракеты.
Ракетный двигатель совершает полезную работу за счет израсходования скоростной энергии газов, вытекающих из двигателя в атмосферу.
Доля тепловой энергии топлива, переходящей в скоростную энергию газов и, следовательно, величина этой скоростной энергии, от скорости полета не зависит.
В то же время мощность двигателя при изменении скорости полета меняется.
Это означает, что в зависимости от скорости полета скоростная энергия вытекающих из двигателя газов по-разному используется для совершения полезной работы[3].
Преобразование скоростной энергии газов в полезную работу двигателя полностью определяется скоростью полета. Некоторые характерные в этом отношении (режимы полета ракеты или самолета с ракетным двигателем представлены на фиг. 8. Верхний рисунок на этой фигуре соответствует режиму взлета — двигатель работает, но ракета неподвижна, скорость полета равна нулю. При этом полезная работа, т. е. мощность двигателя, тоже равна нулю. Куда же расходуется скоростная энергия струи газов, с большой скоростью вытекающих из двигателя? Очевидно газы, которые в этом случае мчатся относительно земли со скоростью, равной скорости истечения, уносят с собой эту скоростную энергию, которая затем бесполезно рассеивается в атмосфере.
Но вот ракета взлетела и начинает полет со все увеличивающейся скоростью. При этом разность между скоростью истечения и скоростью полета становится все меньше. Поэтому молекулы газа движутся относительно земли в сторону, противоположную направлению полета, со все меньшей скоростью. Это значит, что скоростная энергия, уносимая с собой молекулами, становится все меньшей. Следовательно, все большая часть скоростной энергии струи преобразовывается в полезную работу, сообщается ракете.
Весьма характерным является момент, когда увеличивающаяся скорость полета становится равной скорости истечения газов из двигателя, что соответствует среднему рисунку на фиг. 8. Очевидно что при этом скорость газов относительно земли становится равной нулю, т. е. относительно неподвижного наблюдателя газы будут неподвижными. Но это означает, что скоростная энергия этих газов равна нулю и, следовательно, вся скоростная энергия струи переходит в полезную работу. Однако следует иметь в виду, что это отвечает очень большой скорости полета, так как скорость истечения газов из ракетного двигателя равна 1500–2500 м/сек, т. е. примерно 5000-10000 км/час. Следовательно, этот случай может иметь место только при полете в самых верхних слоях атмосферы и вне ее. При скоростях полета до 1000–1200 км/час в полезную работу переходит менее четверти скоростной энергии струи.
Фиг. 8. Характерные режимы полета ракеты (точками условно обозначены молекулы газа, стрелками — направление их скорости относительно неподвижного наблюдателя).
При дальнейшем увеличении скорости полета молекулы газа, как это показано на нижнем рисунке фиг. 8, движутся относительно неподвижного наблюдателя в том же направлении, что и ракета, со скоростью, равной разности скорости полета и скорости истечения. При этом энергия, отдаваемая струей ракете, т. е. совершаемая ракетой полезная работа, даже превышает скоростную энергию струи. Противоречие здесь, конечно, лишь кажущееся, что становится очевидным, если рассматривать не только тепловую, но и скоростную энергию сжигаемого топлива, приобретенную им в результате ускорения ракеты в течение предшествующего полета.
Для уменьшения потерь скоростной энергии отходящих газов на малых скоростях полета на выходе из ракетного двигателя могут быть установлены специальные насадки, расположенные с некоторым зазором вокруг выходного сечения реактивного сопла[4]. При полете в атмосфере через кольцевую щель между таким насадком и соплом подсасывается воздух, который примешивается к струе отходящих газов, уменьшая их скорость, но зато увеличивая массу. Это может привести к существенному повышению тяги и, следовательно, мощности; например, когда двигатель неподвижен, т. е. скорость полета равна нулю, то такой, как говорят, эжекционный подсос воздуха, увлекаемого струей выходящих газов, увеличивает тягу двигателя на 1/3. Но когда скорость полета увеличивается, этот выигрыш в тяге резко падает: так, при скорости полета, составляющей всего 5 % от скорости истечения, выигрыш в тяге уменьшается наполовину. При еще больших скоростях вместо выигрыша может получиться даже уменьшение тяги.
Экономичность ракетного двигателя
Наряду с мощностью важнейшей характеристикой каждого двигателя является его экономичность. Если речь идет о тепловом двигателе, то экономичность его определяется расходом топлива на единицу мощности, т. е. на 1 л. с. Экономичный двигатель на 1 л. с. будет расходовать меньше топлива, чем неэкономичный, т. е. его работа будет обходиться дешевле. Этим и объясняется термин «экономичный».
- Танковая мощь СССР часть I Увертюра - Михаил Свирин - Техническая литература
- Танковая мощь СССР часть III Золотой век - Михаил Свирин - Техническая литература
- Энергетические войны – 2 - Владимир Гришин - Техническая литература
- Светлые века. Путешествие в мир средневековой науки - Себ Фальк - Исторические приключения / Техническая литература
- Полвека в авиации: записки академика - Евгений Федосов - Техническая литература
- Сердца и камни - Оскар Курганов - Техническая литература
- Битва за звезды-2. Космическое противостояние (часть II) - Антон Первушин - Техническая литература
- Электротехнические и электромонтажные работы - Георгий Лаптев - Техническая литература
- История отечественного танкостроения в послевоенный период - А. Тарасенко - Техническая литература
- Соколиная охота (Малые противолодочные корабли проектов 1141 и 11451) - Г. Дмитриев - Техническая литература