Шрифт:
Интервал:
Закладка:
Стеклопластиковая арматура и ее виды
Наиболее простым видом стеклопластиковой арматуры являются стержни нужной длины, которые применяются взамен стальных. Не уступая стали по прочности, стеклопластиковые стержни значительно превосходят их по коррозионной стойкости и поэтому используются в конструкциях, в которых существует опасность коррозии арматуры. Скреплять стеклопластиковые стержни в каркасы можно с помощью самозащелкивающихся пластмассовых элементов или связыванием.
Рис. 1.8. Стеклопластиковая арматура
Арматура может выпускаться периодического профиля в виде винтовой линии (рис. 1.8), в виде «елочки» или улучшенного с насечками, что способствует повышению ее сцепления с окружающим бетоном.
Стекловолоконная арматура принадлежит к классу волоконных композитных материалов. Новейшие технологии позволяют изменять свойства путем выбора конкретных волокон, регулирования ориентации волокон и применением различных связующих материалов.
Внешнее стеклопластиковое армирование
В случае агрессивности среды к бетону эффектной защитой является внешнее армирование. При этом внешняя листовая арматура может выполнять одновременно три функции: силовую, защитную и функцию опалубки при бетонировании.
Если внешнего армирования недостаточно для восприятия механических нагрузок, применяется дополнительная внутренняя арматура, которая может быть как стеклопластиковой, так и металлической.
Внешнее армирование разделяется на сплошное и дискретное. Сплошное представляет собой листовую конструкцию, полностью покрывающую поверхность бетона, дискретное – элементы сетчатого типа или отдельные полосы. Наиболее часто осуществляется одностороннее армирование растянутой грани балки или поверхности плиты.
Основная идея конструкций с внешним армированием состоит в том, что герметичная стеклопластиковая оболочка надежно защищает бетонный элемент от воздействий внешней среды и, одновременно, выполняет функции арматуры, воспринимая механические нагрузки.
Возможны два пути получения бетонных конструкций в стеклопластиковых оболочках. Первый включает изготовление бетонных элементов, их сушку, а затем заключение в стеклопластиковую оболочку, путем многослойной обмотки стекломатериалом (стеклотканью, стеклолентой) с послойной пропиткой смолой. После полимеризации связующего обмотка превращается в сплошную стеклопластиковую оболочку, а весь элемент – в трубобетонную конструкцию.
Второй путь основан на предварительном изготовлении стеклопластиковой оболочки и последующем заполнении ее бетонной смесью.
Стеклопластиковая арматура: коррозионная стойкость
Стойкость стеклопластиков к воздействию агрессивных сред в основном зависит от вида полимерного связующего и волокна. При внутреннем армировании бетонных элементов стойкость стеклопластиковой арматуры должна оцениваться не только по отношению к внешней среде, но и по отношению к жидкой фазе в бетоне, так как твердеющий бетон является щелочной средой, в которой обычно применяемое алюмоборосиликатное волокно разрушается. Испытания показали, что стеклопластиковая арматура имеет стойкость в кислой среде более чем в 10 раз, а в растворах солей более чем в 5 раз выше стойкости стальной арматуры. Наиболее агрессивной для стеклопластиковой арматуры является щелочная среда. Снижение прочности стеклопластиковой арматуры в щелочной среде происходит в результате проникновения жидкой фазы к стекловолокну через открытые дефекты в связующем, а также посредством диффузии через связующее.
Стеклопластиковая арматура: применение при ремонте железобетонных конструкций
Традиционные способы усиления и восстановления железобетонных конструкций достаточно трудоемки и часто требуют продолжительной остановки производства. В случае агрессивной среды после ремонта требуется создать защиту сооружения от коррозии. Высокая технологичность, малые сроки твердения полимерного связующего, высокая прочность и коррозионная стойкость внешнего стеклопластикового армирования предопределили целесообразность его использования для усиления и восстановления несущих элементов сооружений. Применяемые для этих целей способы зависят от конструктивных особенностей ремонтируемых элементов.
Капиталовложения на возведение конструкций, где используется стеклопластиковая арматура, значительно больше, чем железобетонных. Однако через 5 лет они окупаются, а через 20 лет экономический эффект достигает стоимости возведения конструкций.
Энергосберегающая технология утепления наружных стен зданий базальтофибробетоном
Новая технология утепления наружных стен жилых крупнопанельных зданий с базальтофибробетонной облицовкой разработана Седип С. А. в СПбГАСУ и внедрена в Тыве (г. Кызыл).
Анализ существующих систем наружного утепления стен панельных зданий (табл. 1.3) выявил достоинства и недостатки этих систем. Откуда следует, что наиболее рациональным является навесная невентилируемая система в связи с незначительной трудоемкостью и стоимостью работ. При этом облицовочные элементы не растрескиваются, хорошо противостоят ударным воздействиям, теплоизоляционные работы выполняются в любое время года.
Таблица 1.3. Анализ существующих систем утепления зданий
На основе анализа существующих систем наружного утепления стен зданий были предложены три варианта конструкции навесной невентилируемой системы (рис. 1.9.), имеющие лучшие технико-экономические показатели (табл. 1.4): I вариант – приклеивание утеплителя с облицовкой из базальтофибробетона, которая крепится к стене шпонками из базальтофибробетона, армированными полимерными анкерами; II – установка и приклеивание утеплителя между деревянными рейками, монтаж облицовки из волокнисто-цементных плит на анкерах; III – монтаж утеплителя и облицовки на металлических анкерах.
Рис. 1.9. Три варианта конструкций утепления наружных стен крупнопанельных зданий: 1 – существующая стена; 2 – базальтофибробетонная стяжка; 3 – утеплитель; 4 – шпонки из базальтофибробетона; 5 – анкер из полимерной арматуры; 6 – клеевой слой; 7 – деревянная рейка; 8 – волокнисто-цементные плиты; 9 – металлический анкер; 10 – шуруп-саморез
Таблица 1.4. Технико-экономические показатели различных конструкций навесных невентилируемых систем утепления наружных стен зданий
Рис. 1.10. Конструктивная схема утепления наружных стен жилых панельных зданий жесткими пенополистиролбетонными плитами с базальтофибробетонной облицовкой
Конструкция наружного утепления, состоящая из жесткого плитного утеплителя из пенополистиролбетона с базальтофибробетонной облицовкой показана на рис. 1.10. Физико-технические свойства используемых материалов при утеплении наружных стен жилых крупнопанельных зданий по предложенной технологии приведены в табл. 1.5
Таблица 1.5. Физико-технические свойства используемых материалов
Суть предложенной технологии утепления наружных стен состоит в том, что на поверхность жестких плит из пенополистиролбетона заводского изготовления с одной стороны методом торкретирования наносится базальтофибробетонная стяжка толщиной 5—10 мм с последующим выравниванием и затиркой, а с другой – слой клея типа «КРЕПС» (2–4 мм). Затем плита устанавливается в проектное положение таким образом, чтобы перекрыть мостики холода в наружных стенах здания, крепится клеем и шпонками из базальтофибробетона армированными полимерными анкерами. Для анкеровки плит в стене здания просверливают отверстия, в которые затем инъецируется базальтофибробетонный раствор и вставляется полимерный анкер (при твердении раствора образуется анкерное крепление в виде шпонки). Предпочтение отдается полимерному анкеру, т. к. металлический подвергается коррозии. Надежность крепления панелей к стене гарантируется результатами испытаний анкеров, которые выдерживают усилие на вырывание: 4–4,8 МПа при твердении в течение 1 часа; 10–12 МПа при твердении через 1 сутки.
Отличительной особенностью данной технологии утепления является применение в качестве защитного слоя базальтофибробетонной стяжки и в качестве крепежа шпонок из базальтофибробетона, армированных полимерными анкерами.
Последовательность выполнения технологических операций по утеплению наружных стен жилых крупнопанельных зданий по разработанной технологии в виде технологических схем показана на рис. 1.11—1.13.
Рис. 1.11. Технологическая схема нанесения на пенополистиролбетонные плиты базальтофибробетонной стяжки в полигонных условиях: 1 – бункер для хранения цемента; 2 – склад песка; 3 – бункер для хранения тонкодисперсного базальтового волокна; 4 – бак для воды; 5 – растворосмеситель; 6 – емкость для раствора; 7 – стенд для нанесения, выравнивания базальтофибробетонной стяжки и затирки поверхности; 8 – склад готовой продукции; 9 – стенд для нанесения клея-раствора из базальтофибробетона
- Информационная технология ПРОЦЕСС СОЗДАНИЯ ДОКУМЕНТАЦИИ ПОЛЬЗОВАТЕЛЯ ПРОГРАММНОГО СРЕДСТВА - ГОССТАНДАРТ РОССИИ - Техническая литература
- Строим дом от фундамента до кровли - Светлана Хворостухина - Техническая литература
- Методы тестирования радиооборудования сети LTE. Подробный анализ - Александр Константинов - Техническая литература
- Дирижабли на войне - Валерий Агатонович Обухович - Военная техника, оружие / Техническая литература
- Оружие современной пехоты. Часть 1 - Семен Федосеев - Техническая литература
- Неорганические вяжущие строительные материалы - Илья Мельников - Техническая литература
- Электротехнические материалы и оборудование - Илья Мельников - Техническая литература
- Электротехнические и электромонтажные работы - Георгий Лаптев - Техническая литература
- Коммерческая электроэнергетика: словарь-справочник - Валентин Красник - Техническая литература
- Бытовые современные счетчики газа и газоанализаторы для практического применения - Андрей Кашкаров - Техническая литература