Шрифт:
Интервал:
Закладка:
Нарушение симметрии уже встречалось нам пару раз, однако поскольку мы думаем о мозголомном мире внутренних симметрий и о физике частиц, не помешает освежить в памяти, о чем, собственно, речь.
Предположим, вы обследуете ледяную планету Хот. Куда бы вы ни направились, жизнь повсюду более или менее одинакова — стоит трескучий мороз. Это потому, что планета находится в центре пространства. Она обладает идеальной сферической симметрией. Жизнь одинакова, куда бы вы ни пошли, и хотя, если вам так уж приспичило рисовать карту, вы вольны выбирать хоть Северный полюс, хоть экватор, без дополнительных ориентиров вроде звезд или каких-то ландшафтных примет подобные направления более или менее лишены смысла.
А вот если запустить Хот по орбите вокруг Солнца, все тут же изменится. Например, экватор сразу становится местом особенным — и там будет жарче среднего, совсем как на Земле. Климат будет сильно меняться в зависимости от широты.
Подобное нарушение симметрии сильно влияет на взаимодействие людей на Земле. Географ и физиолог Джаред Даймонд в своей книге «Ружья, микробы и сталь» доказывает, что технический прогресс, развитие сельского хозяйства и распространение заболеваний происходило по линиям тех или иных широт и что ориентация Евразии с запада на восток обеспечила ее жителям технологические и иммунологические преимущества по сравнению с обитателями обеих Америк.
Мы всего-навсего создали взаимодействие — и мгновенно перешли от двумерной симметрии, где планета повсюду примерно одинакова, к одномерной симметрии, где жизнь одинакова только на одинаковых широтах. Однако, в отличие от Хота, где симметрии нарушаются, если добавить источник тепла, нарушение симметрии почти всегда происходит, наоборот, при остывании системы.
Возьмем, к примеру, железо. Наверное, вы знакомы с железом благодаря его способности удерживать рисунки ваших детишек на дверце холодильника. Вращение каждого атома железа формирует миниатюрный магнит. Это свойство присуще многим веществам, однако железо занимает особое место, поскольку для его атомов оказывается энергетически выгодно выстраиваться в структуры, и при этом атомы железа сообща создают довольно мощное магнитное поле.
С другой стороны, уничтожить железный магнит очень просто, достаточно лишь разогреть его до температуры выше 1043 К — она называется температурой Кюри (в честь Пьера Кюри). Это все равно что положить все атомы железа в блендер и нарушить всякий порядок ориентации, только средствами термодинамики. Вначале налицо была явная асимметрия — у магнита есть северный и южный полюс, — однако симметрию удалось восстановить простым нагревом.
Как остывает железо
По мере остывания железного бруска, при условии, что остывает он достаточно медленно, атомы снова ориентируются параллельно друг другу — и кусок железа снова превращается в большой магнит. В каком направлении они встанут, никто не знает. Разумеется, можно нарушить симметрию и вручную, если просто поместить железо во внешнее магнитное поле, и тогда все атомы выстроятся именно так, как требуется.
Это (предположительно) справедливо и для законов физики в целом. Первые 10–36 секунд существования вселенной были золотым веком для любого физика. Все было так раскалено, что симметрии были очевидны. Правда, при этом, разумеется, все было так раскалено, что даже наши протоны выкипели бы на отельные кварки, но на что не пойдешь ради науки!
Жизнь при низкой температуре
Вся эта книга — о том, какой симметричной должна быть вселенная, однако при всем при том наш, человеческий мир на вид не очень-то симметричный. Мы живем не в рисунке Эшера.
Приведу простой, приземленный пример: в нашем мире есть верх и низ, и различить их очень просто, достаточно лишь взглянуть, как падает яблоко, или налить воды в кастрюлю.
Химик мог бы рассмотреть взаимодействия между молекулами воды и решить, что как ни повернешь капельку воды, взаимодействия останутся прежними. Однако в обычных условиях жизни на Земле все не так. Отдельные капельки воды в кастрюле могут двигаться вправо и влево, если захотят, однако поверхность воды становится для них практически непреодолимой преградой и ярким свидетельством того, что по крайней мере для воды три измерения пространства совершенно точно не симметричны друг другу.
Но стоит взять эту кастрюлю с водой и поставить на плиту, начинаются странности. Поднимайте температуру все выше и выше — и вода закипит и превратится в пар. Тут почему-то гравитация играет уже не такую значительную роль. На первый план выходит подлинная симметрия взаимодействия молекул воды. Теперь они могут более или менее одинаково двигаться по всем трем направлениям.
Все это справедливо для всех фундаментальных взаимодействий в природе.
При очень низких температурах — а низкими в таком контексте называются температуры в сотни миллионов градусов — взаимодействия очень сильно отличаются друг от друга. Но если поднять температуру гораздо выше — или, что то же самое, повернуть часы вселенной вспять и углубиться все дальше и дальше в прошлое, к первым мгновениям ее существования — как начинают проявляться скрытые симметрии.
Как же проявляются эти симметрии, чем похожи друг на друга взаимодействия? Модель, получившая довольно-таки скромное название «электрослабая», описывает сочетание электромагнетизма и слабого взаимодействия, однако если попытаться добавить в нее остальные взаимодействия, придется изменить привычной сдержанности и прибегнуть к более выспренному слогу. Теории Великого объединения описывают сочетание сильного, слабого и электромагнитного взаимодействия. Если пойти еще дальше, можно выдвинуть Теорию Всего[111], прибавив сюда еще и гравитацию.
Прежде чем углубиться в дебри серьезных теорий, основанных на сложных симметриях, полезно будет ненадолго отойти в сторонку и задаться вопросом, почему, собственно, мы вправе предполагать, что разные взаимодействия — это на самом деле одно и то же, если отбросить соображения эстетики.
Рассмотрим одинокий электрон в космическом вакууме. Вокруг него то возникают, то исчезают многочисленные пары частиц-античастиц. Эти виртуальные пары действуют как рябь на поверхности океана.
Хотя каждая отдельная «рябинка» живет всего мгновение, в каждый момент их очень много. Несмотря на краткость их существования в нашем мире, виртуальные позитроны притягиваются к реальному электрону, отчасти уменьшая его электрическое поле, а виртуальные электроны отталкиваются.
Представьте это себе в виде налога на продажи. Я знаю, что гамбургер за доллар должен стоить именно доллар, и так его и рекламируют, однако в Филадельфии ваш макмаффин будет стоить на самом деле 1 доллар 7 центов. Так вот, эта цена и должна вас интересовать, ведь столько вы и заплатите. В этом же смысле мы на самом деле не знаем (да нас это и не интересует), каков «беспримесный» заряд электрона — та величина, которую мы получим, если каким-то образом исключим воздействие всех виртуальных частиц.
Экранирующий эффект виртуальных частиц похож больше на купон, чем на налог (скорее снижает, чем добавляет), однако суть та же. Заряд электрона, который мы знаем и любим и значение которого можем посмотреть в справочнике, — это не настоящая цена на ценнике. Электрический заряд, который вы наблюдаете, меньше «беспримесного» заряда, который мы бы наблюдали, если бы сумели каким-то образом подойти к электрону произвольно близко.
Экранирование электрона
Разница между наблюдаемым и беспримесным зарядами помогает пролить свет на один из серьезных пробелов стандартной модели: почему у разных взаимодействий разная сила?
Если повышать энергию все больше — то есть если все ближе подбираться к беспримесному заряду, — начинаются странности. Электрическое взаимодействие становится сильнее, зато слабое взаимодействие слабеет. Экранирование работает в противоположную сторону. Вспомните, что слабое взаимодействие парадоксальным образом сильнее электромагнитного, а если со стороны все выглядит иначе, то лишь потому, что частицы W и Z так массивны. При достаточно высоких энергиях у этих взаимодействий будет совершенно одинаковая сила.
То же самое происходит и с сильным взаимодействием, только по другим причинам. Существует понятие асимптотической свободы, которое, помимо всего прочего, объясняет, почему во вселенной не наблюдаются отдельные кварки. В отличие от большинства сил, которые с увеличением расстояния слабеют, сильное взаимодействие становится все сильнее и сильнее. Если я попробую разобрать протон на составляющие его кварки и рассмотреть их по отдельности, вся энергия, которую я в это вложу, пойдет на создание новых частиц. Как ни странно, глюоны обладают в точности теми же качествами, что и Себастьян Шоу из «Людей Х». Если на них напасть, они станут лишь сильнее.
- Мир физики и физика мира. Простые законы мироздания - Джим Аль-Халили - Прочая научная литература / Физика
- Ткань космоса: Пространство, время и текстура реальности - Брайан Грин - Физика
- Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан - Физика
- Предчувствия и свершения. Книга 1. Великие ошибки - Ирина Львовна Радунская - Физика
- Неизвестный алмаз. «Артефакты» технологии - Владимир Карасев - Физика
- Как устроен этот мир - Алексей Ансельм - Физика
- Нейтрино - призрачная частица атома - Айзек Азимов - Физика
- Куда течет река времени - Новиков Игорь Дмитриевич - Физика
- Занимательное волноведение. Волненя и колебания вокруг нас - Гэвин Претор-Пинни - Физика
- Секреты человеческой доброты - Сергей Пилипенко - Физика