Шрифт:
Интервал:
Закладка:
Несмотря на существенные усовершенствования, такой ускоритель окажется, видимо, чрезвычайно дорогостоящим "удовольствием", его строительство, скорее всего, будет вестись совместными усилиями Советского Союза, Соединенных Штатов и других высокоразвитых стран. С учетом непременных накопительных колец новое поколение суперсинхротронов обеспечит выход в изучении процессов взаимодействия примерно при 20 миллиардах гигаэлектрон-вольт (порядка 1019 эВ!). Правда, произойдет это вряд ли раньше начала 90-х годов нашего века.
После этого ожидается серьезный качественный сдвиг в используемых на практике принципах ускорения, скажем, применение коллективных методов ускорения или других не менее эффективных идей. В связи с таким преобразованием есть все основания предполагать, что на рубеже XXI века будут достигнуты заветные 1021 электрон-вольт, по крайней мере, в экспериментах на встречных пучках. Прорыв к протонным пучкам такой энергии для постановки "нормальных" опытов на неподвижной мишени, несомненно, потребует смены (и, возможно, не одной!) общей технической вооруженности и изобретения каких-то новых принципов концентрации энергии.
Не исключено, что основная идея ускорения выдержит испытание и в дальнейшем, но не будем забывать, что это лишь одна из наверняка многих возможностей.
Как это нередко случается, при покорении очередных грандиозных рубежей наступает момент переоценки ценностей. При высокой степени освоения околоземного космоса и создании научных баз на Луне, которые появятся в ближайшие десятилетия, могут оказаться выгодными методы искусственной концентрации космических лучей с помощью определенных комбинаций магнитных ловушек. Такому способу можно научиться у самой природы, поскольку примерно так и ускоряются потоки космических частиц в межзвездном и межгалактическом пространстве. Разумеется, этот фантастический проект потребует серьезных сдвигов в получении сверхмощных и устойчивых магнитных полей
Но это лишь одна и, наверное, не самая красивая возможность. Самое впечатляющее открытие в области методов ускорения частиц до супервысоких энергий, конечно же, впереди. И в этом особая притягательная сила науки - ее перспективы всегда намного фантастичней, чем могут представить себе самые глубокие и дальновидные пророки.
Нечто подобное происходит, разумеется, и в оценках будущего теории. Возможно, что известные частицы так и останутся в роли мельчайших структурных элементов мира, обладающих свойствами отдельных, в определенной степени "самостоятельных" объектов. Но это ни в коей мере не будет означать, что познание микромира достигло последней ступени. Напротив, именно теперь мы и сталкиваемся с совершенно новыми представлениями о структуре. На очереди понимание закономерностей эволюции частиц в области сильного взаимодействия, постижение картины формирования адронов.
Возникновение и постепенная разработка такой точки зрения - факт совершенно неожиданный для традиционных атомистических представлений, для которых более сложные объекты всегда сводились к конструкции из некоторого числа "простейших кирпичиков". Развивающиеся объекты, структура которых предопределяет конкретную программу их поведения, всегда были в некоторой степени чужды физике.
[Image002]
Примерно так выглядит "ускорительный альпинизм" За 40 лет достигнутые на ускорителях энергии выросли почти в миллион раз. Если такая тенденция сохранится впредь, то к концу нашего тысячелетия они достигнут границы изученного спектра космических лучей.
ОИЯИ - Объединенный институт ядерных исследований в Дубне (СССР).
ЦЕРН - Европейский центр ядерных исследований (Швейцария).
БНЛ - Брукхэвенская национальная лаборатория (США).
ИФВЭ - Институт физики высоких энергий в Протвине (СССР).
ФНАЛ - Национальная ускорительная лаборатория имени Э.Ферми в Батавии (США).
Эта традиция имеет довольно глубокие корни. Уже в фундамент механики Галилея и Ньютона, от которой "и есть-пошла" современная физика, были заложены представления о мире как о сравнительно простой машине, в основе устройства и работы которой лежали один-два фундаментальных силовых закона. В сущности, классики ни в чем не виноваты. Они вырабатывали свои идеи, отражая окружавший их мир, где венцом технической мысли и впрямь были простые механические устройства. И их величайшая заслуга в том, что они преодолели тяжкие путы средневековой концепции, трактовавшей мир как овеществленный "промысел божий" и считавшей собственно научный способ постижения закономерностей природы отнюдь не обязательным.
Но за истекшие три столетия снова многое изменилось. Механистические представления о всеобщности простых машин оказались бессильными перед целым рядом замечательных открытий. И первый феноменально мощный удар по ним нанесла биология, а конкретно - дарвиновская эволюционная теория. Наблюдаемое многообразие живого мира не есть "богом данное членение тварей", а представляет собой продукт длительного развития, восхождения по десяткам тысяч ступеней от простого к сложному, заявил великий английский ученый. И даже человек не является раз и навсегда установленным "венцом творения и носителем частицы духа господня" - он лишь высший этап эволюции земных существ.
.Дарвиновские идеи были встречены не только злобными нападками церковников, но и резкой критикой ряда ученых. Ведь развитие было не так-то просто совместить с представлением о неизменной, раз и навсегда заведенной машине. Представьте себе ситуацию, когда сотни и сотни врачей и физиологов познали внутреннее устройство человеческого тела и пришли к выводу, что это какая-то не слишком мудреная комбинация из трубок с жидкостью (кровеносной и лимфатической систем) и мышц, способных к механическому действию. Конечно, большинство из них четко видели, что "помысел господень" тут ни при чем, но законы эволюции были слишком трудны для такого уровня.
Потребовались величайшие усилия - открытие законов наследственности, появление генетики, прорыв к молекулярной структуре клетки, чтобы осознать, что, если аналогия с машиной и имеет какой-либо смысл, то речь должна идти о фантастически сложной, саморазвивающейся машине. Чтобы увидеть первые образцы, точнее далекие прообразы технических устройств высокой степени сложности, пришлось ждать до совсем недавних времен, когда родилась кибернетика и общая теория автоматов.
Сейчас мы понимаем, что гигантские электронные машины в принципе можно запрограммировать на саморазвитие. Достаточно сложная кибернетическая машина способна проектировать и с помощью автоматических устройств воспроизводить себе подобных. При дальнейшем усовершенствовании она сможет улучшить программы своих творений, то есть изготовлять нечто более сложное, чем она сама. Так постепенно сформировался технический эквивалент эволюционизирующих биологических систем, но не следует, конечно, забывать, что пока это лишь эквивалент на уровне идей - реальные возможности действующих "электронных мозгов" еще весьма ограничены, пока просто не соизмеримы с тем, чего добилась природа за миллионы и миллионы лет биологической эволюции.
(adsbygoogle = window.adsbygoogle || []).push({});- Классически квантованный кошмар - Чарльз Шеффилд - Научная Фантастика
- Черная неделя Ивана Петровича - Александр Потупа - Научная Фантастика
- Эффект Лакимэна - Александр Потупа - Научная Фантастика
- Фантакрим - XXI - Александр Потупа - Научная Фантастика
- Эффект лягушки - Александр Потупа - Научная Фантастика
- Байки космических бродяг – 2. Юмористическая фантастика - Александр Кеслер - Научная Фантастика
- Сердце Малого Льва - Елена Федина - Научная Фантастика
- Спираль времени. Гость из бездны - Георгий Мартынов - Научная Фантастика
- Четвертая Беты - Гоар Маркосян-Каспер - Научная Фантастика
- Механизм Времени - Генри Олди - Научная Фантастика