Рейтинговые книги
Читем онлайн Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 65 66 67 68 69 70 71 72 73 ... 116

Приведённые утверждения достаточно сложны, поэтому ещё раз подчеркнём один из главных моментов. Если мы принципиально будем игнорировать различие между «простым» и «трудным» подходами к измерению длины и будем, например, продолжать использовать моды ненамотанной струны при стягивании R за планковскую длину, то, казалось бы, мы действительно сможем измерить расстояния, меньшие планковской длины. Однако, как говорилось выше, слово «расстояния» в предыдущем предложении должно быть аккуратно определено, так как у этого слова два различных значения, и только одно из них соответствует нашему традиционному пониманию. А в данном случае, когда R становится меньше планковской длины, но мы продолжаем использовать ненамотанные струны (несмотря на то, что они теперь тяжелее намотанных), мы используем «трудный» подход к измерению расстояний, и смысл понятия «расстояние» не соответствует общеупотребительному значению этого слова. Эти рассуждения, однако, далеко выходят за рамки семантики или даже за рамки обсуждения удобства или практичности измерения. Даже если мы выберем нестандартное понятие расстояния, считая радиус меньшим, чем планковская длина, законы физики, как обсуждалось в предыдущих пунктах, будут идентичны законам физики во Вселенной, где этот радиус (в обычном понимании расстояния) будет больше планковской длины (об этом, например, свидетельствует точное соответствие табл. 10.1 и 10.2). А для нас важна именно физика, а не терминология.

На основе этих идей Бранденбергер, Вафа и другие физики предложили переписать законы космологии таким образом, чтобы в моделях Большого взрыва или возможного Большого сжатия фигурировала не Вселенная нулевого размера, а Вселенная, все размеры которой равны планковской длине. Безусловно, это весьма интересное предложение для устранения математических, физических и логических нестыковок в описании Вселенной, рождающейся из точки с бесконечной плотностью и схлопывающейся в эту точку. Конечно, сложно вообразить себе Вселенную, сжатую до крошечной песчинки планковского размера, но вообразить себе Вселенную, сжатую до нулевого размера — вот это уж действительно слишком. Весьма вероятно, что более удобоваримую альтернативу стандартной модели Большого взрыва даст находящаяся сейчас в зачаточном состоянии струнная космология, которую мы обсудим в главе 14.

Насколько общий этот вывод?

Что произойдёт, если пространственные измерения не являются циклическими? Будут ли и в этом случае справедливы замечательные утверждения теории струн о минимальных пространственных размерах? Никто не знает точного ответа. Важнейшее свойство циклических измерений состоит в том, что на них можно наматывать струны. Коль скоро на пространственные измерения можно наматывать струны, большинство выводов будут оставаться справедливыми вне зависимости от точного вида этих измерений. Но что будет, если, скажем, два измерения имеют вид сферы? Тогда нельзя заставить струны сохранять намотанную конфигурацию: они всегда могут «соскользнуть» подобно тому, как резинка может соскользнуть с мяча, на который она натянута. Накладывает ли теория струн ограничение на минимальный размер и в этом случае?

Судя по результатам многочисленных исследований, ответ зависит от того, сжимается ли всё пространственное измерение (как в примерах этой главы), или (с чем мы столкнёмся в главах 11 и 13) коллапсирует отдельный «кусок» пространства. Как считает большинство теоретиков, независимо от вида пространства существует минимальный предел сжатия всего пространственного измерения, и механизм возникновения этого предела во многом схож с механизмом в случае циклических измерений. Обоснование существования предела является важной задачей дальнейших исследований ввиду её непосредственного влияния на многие аспекты теории струн, включая следствия для космологии.

Зеркальная симметрия

Создав общую теорию относительности, Эйнштейн связал физику тяготения с геометрией пространства-времени. На первый взгляд, теория струн укрепляет и расширяет связь между физикой и геометрией: свойства колеблющихся струн (например, массы и переносимые ими заряды) в значительной степени определяются свойствами свёрнутой компоненты пространства. Однако, как мы только что видели, квантовая геометрия, связывающая геометрические и физические стороны теории струн, обладает рядом удивительных свойств. В общей теории относительности, как и в «традиционной» геометрии, окружность радиуса R отличается от окружности радиуса 1/R, что кажется незыблемым и очевидным, а в теории струн эти окружности физически неразличимы. Этот факт подталкивает нас пойти дальше и задаться вопросом, не существует ли геометрических структур пространства, отличающихся друг от друга ещё сильнее (не только размером, но, возможно, и видом), но, тем не менее, физически неразличимых в теории струн?

В 1988 г. Ленс Диксон из Стэндфордского центра линейных ускорителей сделал важнейшее в этом отношении наблюдение, которое впоследствии было обобщено Вольфгангом Лерхе из ЦЕРНа, Вафой из Гарварда и Николасом Уорнером, работавшим в то время в Массачусетском технологическом институте. На основе эстетических соображений, основанных на понятии симметрии, эти физики выдвинули смелое предположение, что два различных многообразия Калаби — Яу, выбранные в качестве дополнительных измерений в теории струн, могут приводить к одинаковым физическим результатам.

Чтобы дать представление о том, как может оказаться справедливой подобная кажущаяся невероятной гипотеза, вспомним, что число отверстий в добавочных измерениях Калаби — Яу определяет число семейств, в которые группируются возбуждения струны. Эти отверстия аналогичны отверстиям тора или его обобщений с несколькими ручками (рис. 9.1). К несчастью, на двумерном рисунке, который можно воспроизвести на странице, нельзя продемонстрировать то, что отверстия в шестимерном пространстве Калаби — Яу могут иметь различные размерности. Хотя такие отверстия трудно вообразить, их можно описать на понятном математическом языке. Суть состоит в том, что число семейств частиц, возникающих при возбуждениях струны, зависит только от числа всех отверстий, а не от числа отверстий каждой конкретной размерности (вот почему мы не заботились о том, чтобы изобразить разнообразные отверстия в главе 9). Предположим теперь, что у двух пространств Калаби — Яу число отверстий разных размерностей различно, но суммарное число отверстий одинаково. Так как число отверстий различных размерностей не совпадает, два этих пространства различны. Но так как суммарное число отверстий одинаково, число семейств в каждой Вселенной одно и то же. Конечно, это говорит о совпадении лишь одного физического свойства. Эквивалентность всех физических свойств — гораздо более сильное требование, но и совпадение одного свойства уже свидетельствует в пользу того, что гипотеза Диксона — Лерхе — Вафы — Уорнера может оказаться верной.

В конце 1987 г. я поступил на стажировку на физический факультет Гарвардского университета, где мне выделили кабинет по соседству с кабинетом Вафы. Так как тема моей диссертации была посвящена физическим и математическим свойствам свёрнутых измерений Калаби — Яу в теории струн, Вафа держал меня в курсе своих работ в этой области. Когда в конце 1988 г. он, стоя на пороге моего кабинета, сообщил о гипотезе, к которой они пришли совместно с Лерхе и Уорнером, я был весьма заинтересован, но отнёсся к ней скептически. Интерес объяснялся тем, что в случае, если гипотеза окажется верной, она может открыть новые просторы исследований в теории струн, а скепсис был следствием понимания того, что догадки и установленные свойства теории — далеко не одно и то же.

На протяжении следующих месяцев я часто думал об этой гипотезе, и, честно говоря, почти убедил себя в том, что она неверна. Но вскоре, к моему удивлению, казалось бы, совершенно не связанные исследования совместно с Роненом Плессером, который в то время был аспирантом в Гарварде, а теперь работает в Институте Вейцмана и университете Дьюка, полностью изменили моё отношение к гипотезе. Плессер и я заинтересовались методами построения путём математических преобразований новых доселе неизвестных многообразий Калаби — Яу из заданного многообразия Калаби — Яу. Особенно притягательным нам казался метод орбифолдов, предложенный в середине 1980-х гг. Диксоном, Джеффри Харви из Чикагского университета, Вафой и Виттеном. Грубо говоря, этот метод состоит в склеивании различных точек на исходном многообразии Калаби — Яу согласно математической схеме, гарантирующей, что при склеивании снова получится многообразие Калаби — Яу. Эта процедура иллюстрируется на рис. 10.4. Математические выкладки, стоящие за подобными манипуляциями, невообразимо сложны, и в этом причина того, что занимающимся струнами теоретикам удалось детально исследовать эту процедуру лишь применительно к простейшим многообразиям — многомерным обобщениям торов, изображённых на рис. 9.1. Однако мы с Плессером поняли, что ряд очень красивых утверждений Дорона Гепнера, работавшего тогда в Принстонском университете, может привести к мощной теоретической схеме, в рамках которой можно применить технику орбифолдов к сложным многообразиям Калаби — Яу, например, к изображённому на рис. 8.9.

1 ... 65 66 67 68 69 70 71 72 73 ... 116
На этой странице вы можете бесплатно читать книгу Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин бесплатно.
Похожие на Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин книги

Оставить комментарий