Шрифт:
Интервал:
Закладка:
.ENDALIASES
**** RESUMING opampsc-schematic1-opamp.sim.cir ****
.END
Рис. 16.7. Выходной файл для ОУ с f_c = 10 Гц
Активные фильтры
Модель ОУ, представленная выше, может использоваться для любой из схем, проанализированных в главе 5. В качестве второго примера обратимся к рис. 5.24, на котором показан низкочастотный фильтр Баттерворта. Анализ проводится для идеального ОУ, содержащего компонент типа Е с коэффициентом усиления А=200 000 и внутренним сопротивлением Rin=1 МОм. Используйте значения компонентов, приведенные на рис. 5.24. Проект с именем butrwrth и соответствующая схема показаны на рис. 16.8. Обратите внимание, что коэффициент усиления для Е1 составляет -200 000. Это произошло потому, что полюсы управления следуют в порядке, обратном показанному на рис. 5.24.
Рис. 16.8. Низкочастотный фильтр Баттерворта второго порядка
При анализе на PSpice используйте имя Butrwth1 и выполните вариацию частоты от 1 Гц до 100 кГц с шагом в 40 точек на декаду. Проведите моделирование и в Probe получите график выходного напряжения V(5). Выходное напряжение при низких частотах должно составлять 1,586 мВ. Использовав это значение в качестве опорного, получите график
20·lg(V(5)/1,586mB).
График приведен на рис. 16.9 и должен быть таким же, как на рис. 5.26. В выходном файле на рис. 16.10 показаны следующие параметры:
R_Rin 4 3 1Meg
Е_Е15 0 4 3 -2Е5
Рис. 16.9. Частотная характеристика фильтра Баттерворта
**** 03/02/99 14:31:31 *********** Evaluation PSpice (Nov 1998) **************
** circuit file for profile: Butrwth1
*Libraries:
* Local Libraries :
* From [PSPICE NETLIST] section of pspiceev.ini file:
.lib nom.lib
*Analysis directives:
.AC DEC 401Hz 100kHz
.PROBE
*Netlist File:
.INC "butrwrth-SСНЕМАТIС1.net"
*Alias File
**** INCLUDING butrwrth-SCHEMATIC1.net ****
* source BUTRWRTH
C_C1 2 5 31.83nF
R_Rin 4 3 1Meg
R_R2 4 5 5.86k
R_R1 0 4 10k
R_R4 2 3 1k
R_R3 1 2 1k
V_Vi 1 0 DC 0V AC 1mV
E_E1 5 0 4 3 -2E5
С_C2 3 0 31.83nF
**** RESUMING butrwrth-SCHEMATIC1-Butrwth1.sim.cir
**** .INC "butrwrth-SCHEMATIC1.als"
**** INCLUDING butrwrth-SCHEMATIC1.als ****
.ALIASES
С_C1 C1(1=2 2=5 )
R_Rin Rin(1=4 2=3 )
R=R2 R2(1=4 2=5 )
R_R1 R1(1=0 2=4 )
R=R4 R4(1=2 2=3 )
R_R3 R3(1=1 2=2 )
V_Vi Vi(+=1 -=0 )
E_E1 E1(3=5 4=0 1=4 2=3 )
С_C2 C2(1=3 2=0 )
_ _(1=1)
_ _(2=2)
_ _(3=3)
_ _(4=4)
_ _(5=5)
.ENDALIASES
**** RESUMING butrwrth-SCHEMATIC1-Butrwfth1.sim.cir ****
.END
Рис. 16.10. Выходной файл для фильтра Баттерворта
По упомянутой выше причине коэффициент усиления показан как отрицательное число, а команда псевдонима для Rin показана как
R_Rin Rin(1=4 2=3)
Это означает, что полюс 1 Rin является узлом 4, а полюс 2 Rin — узлом 3, условное направление тока через этот резистор на рисунке — вниз. Следовательно, при положительном токе через Rin напряжение на полюсе 1 также будет положительным. Если вы получите вместо этого график
20·lg(V(5)/V(1)·1,586мВ),
согласно выражению, используемому в главе 5, он будет смещен на 60 дБ по оси Y от ожидаемого результата.
Активный полосовой резонансный фильтр
Используем схему на рис. 5.32 как другой пример активного фильтра. Начните новый проект в Capture с именем actvbpfr. Представьте идеальный ОУ, использовав Е с коэффициентом усиления 200 000 и внутренним сопротивлением Rin=1 МОм. Другие компоненты Vi=1 мВ (используется источник типа VAC), L=0,298 Гн, С=0,724 нФ, R=10 кОм, R1=10 кОм и R2=10 кОм. Сохраните схему, затем сравните ее с показанной на рис. 16.11. Подготовьте моделирование на PSpice с именем Actvbpfi. Предусмотрите вариацию по частоте с шагом в 40 точек на декаду от 1 кГц до 1 МГц. Выполните моделирование и получите график
20·lg(V(5)/(V(Vi:+)).
Рис. 16.11. Активный резонансный полосовой фильтр
Результаты показаны на рис. 16.12. На средней частоте f0=11,22 кГц коэффициент усиления фильтра равен 5,994 дБ. Выходной файл на рис. 16.13 идентифицирует компоненты и номера узлов.
Рис. 16.12. Частотная характеристика для полосового фильтра
**** 09/02/99 15:59:54 *********** Evaluation PSpice (Nov 1998)
** circuit file for profile: Actvbpf1
*Libraries:
* Local Libraries :
* From [PSPICE NETLIST] section of pspiceev.ini file:
.lib nom.lib
*Analysis directives:
.AC DEC 40 1kHz 100kHz
.PROBE
*Netlist File:
.INC "actvbpfr-SCHEMATIC1.net"
*Alias File:
**** INCLUDING actvbpfr-SCHEMATIC1.net ****
* source ACTVBPFR
R_R1 4 0 10k
R_Rin 3 4 1Meg
R_R 3 0 10k
R_R2 4 5 10k
C_C 2 3 0.724nF
L_L 1 2 0.289H
V_Vi 1 0 DC 0V AC 1mV
E_E1 5 0 3 4 2E5
**** RESUMING actvbpfr-SCHEMATIC1-Actvbpfl.sim.cir ****
.INC "actvbpfr-SCHEMATIC1.als"
**** INCLUDING actvbpfr-SCHEMATIC1.als ****
.ALIASES
R_R1 R1(1=4 2=0 )
R_Rin Rin(1=3 2=4 )
R_R R(1=3 2=0 )
R_R2 R2(1=4 2=5 )
C_C C(1=2 2=3 )
L_L L(1=1 2=2 )
V_Vi Vi(+=1 -=0 )
E_E1 E1(3=5 4=0 1=3 2=4 )
_ _(1=1)
_ _(2=2)
_ _(3=3)
_ _(4=4)
_ _(5=5)
.ENDALIASES
**** RESUMING actvbpfr-SCHEMATIC1-Actvbpf1.sim.cir ****
.END
Рис. 16.13. Выходной файл для полосового фильтра
Компонент uA741
На рис. 5.9 мы использовали нашу собственную модель для ОУ, чтобы проверить частотную характеристику. Модель очень хороша для изучения частотных характеристик, но она не отражает свойств многочисленных реальных компонентов.
Схемные решения для реальных ОУ можно найти в подробных описаниях ОУ, таких как у Coughlin и Driscoll. Вы увидите, что было бы непрактично пытаться показать всю схему в Capture.
Компонент uA741, имеющийся в PSpice и Capture, является достаточно точной моделью, которую мы могли бы предпочесть нашей собственной модели. При анализе, в дополнение к другим навесным компонентам, необходимо использовать два источника постоянного тока.
Частотная характеристика uA741
Используем снова значения из примера в начале этой главы, чтобы можно было сравнить нашу модель с более совершенной моделью uA741.
Начните в Capture проект с именем opamp. Когда компонент из библиотеки eval появится на рабочем поле, вы обнаружите у него семь уже пронумерованных полюсов. Это несколько необычно при первом знакомстве, но в дальнейшем не вызывает трудностей.
Обозначение узлов подсхемы
Ситуация станет яснее, когда мы установим, что эти номера содержатся в подпрограмме и не являются номерами узлов основной схемы. Обратитесь к разделу «Использование подсхем при моделировании операционных усилителей» в главе 5 для подробного ознакомления с этой темой. Обратите также внимание на использование узлов a, b и с в подсхеме на рис. 5.13, но не в распечатке главного файла. Узлы, показанные на обозначении uA741 (узлы от 1 до 7), не будут узлами в схемном файле.
Продолжите теперь размещать компоненты в схеме, как показано на рис. 16.14. Используйте источник типа VAC для Vs, VDC для V+ и V– и компонент R для R1 и R2. Когда схема будет соединена проводниками, убедитесь, что имеется просто пересечение проводов слева от R2 (у узла 2), а не подключение. Пронумеруйте узлы (с помощью Place, Netlist), как показано на рисунке, сохраните схему и подготовьте моделирование с именем Opamp1. Выполните вариацию по частоте с шагом в 40 точек на декаду от 100 Гц до 1 МГц. Затем получите график
20·lg(V(UI:OUT)/V(Vs:+)).
Рис. 16.14. Схема с ОУ uA741
Результаты показаны на рис. 16.15. Сравните этот график с полученным в предыдущем примере при использовании собственной модели в Capture (рис. 16.9). Убедитесь, что коэффициент усиления на средней частоте равен 27,957 дБ.
Рис. 16.15. Частотная характеристика ОУ uA741
- 200 лучших программ для Linux - Сергей Яремчук - Программы
- 1С: Зарплата и управление персоналом 8.2. Понятный самоучитель для начинающих - Алексей Гладкий - Программы
- 1С:Предприятие. Зарплата и кадры. Секреты работы - Дмитрий Рязанцев - Программы
- Защита вашего компьютера - Сергей Яремчук - Программы
- Все секреты Minecraft - Меган Миллер - Программы
- Мир общения: ICQ - Виталий Леонтьев - Программы
- Оцифровываем и ретушируем свой фотоальбом - Виктор Гольцман - Программы
- Бесплатные звонки через Интернет. Skype и не только - Александр Днепров - Программы
- Практикум по информационным технологиям в профессиональной деятельности - Елена Михеева - Программы
- Pinnacle Studio Plus. Основы видеомонтажа на примерах - Владимир Молочков - Программы