Шрифт:
Интервал:
Закладка:
В. Л. Гербов.
Прибельский
Прибе'льский , посёлок городского типа в Кармаскалинском районе Башкирской АССР. Расположен на левом берегу р. Белая, в 5 км от ж.-д. станции. Сахарозаводская (на линии Уфа — Стерлитамак). Сахарный завод, молочноконсервный комбинат, откормочный совхоз.
Прибина
При'бина (г. рождения неизвестен — умер 860), славянский князь. Правил в Нитранском княжестве (на территории современной Словакии), около 833 был изгнан князем Моймиром I. В 842 получил в лен от короля Людовика Немецкого Блатенское княжество , ставшее с 848 собственностью П. Основал столицу княжества г. Блатен (Блатенград). Содействовал христианизации местного славянского населения.
Прибичевич Светозар
При'бичевич (Прибићевић) Светозар (26.10.1875, Хрватска-Костайница, — 15.9.1936, Прага), сербский и югославский политический деятель. С 1910 лидер хорватско-сербской коалиции в хорватском и славонском соборах . В 1918 заместитель председателя Загребского народного веча, участник создания Королевства сербов, хорватов и словенцев (с 1929 — Югославия). В 1918—20 министр внутренних дел, в 1920—22, 1924—25 министр просвещения. В 1919 — один из организаторов Демократической партии , из которой в 1924 вышел и основал Независимую демократическую партию. В 1925 вошёл в коалицию с Н. Пашичем , около 1927 — с С. Радичем . После военно-монархического переворота 1929 П., выступавший против диктатуры короля Александра, был вынужден эмигрировать (в 1931).
Приближение и интерполирование функций
Приближе'ние и интерполи'рование фу'нкций , раздел теории функций, посвященный изучению вопросов приближённого представления функций.
Приближение функций — нахождение для данной функции f функции g из некоторого определённого класса (например, среди алгебраических многочленов заданной степени), в том или ином смысле близкой к f, дающей её приближённое представление. Существует много разных вариантов задачи о приближении функций в зависимости от того, какие функции используются для приближения, как ищется приближающая функция g, как понимается близость функций f и g. Интерполирование функций — частный случай задачи приближения, когда требуется, чтобы в определённых точках (узлах интерполирования) совпадали значения функции f и приближающей её функции g, а в более общем случае — и значения некоторых их производных.
Для оценки близости исходной функции f и приближающей её функции g используются в зависимости от рассматриваемой задачи метрики различных функциональных пространств. Обычно это метрики пространств непрерывных функций С и функций, интегрируемых с р- й степенью, Lp , р ³ 1, в которых расстояние между функциями f и g определяется (для функций, заданных на отрезке [а, b ]) по формулам
и
Наиболее часто встречающейся и хорошо изученной является задача о приближении функций полиномами, т. е. выражениями вида
ak jk (x ),
где (j1 ,..., jn —заданные функции, a a1 ,..., an — произвольные числа. Обычно это алгебраические многочлены
ak xk
или тригонометрические полиномы
а0 + (ak coskx + bk sinkx ).
Рассматриваются также полиномы по ортогональным многочленам , по собственным функциям краевых задач и т.п. Другим классическим средством приближения являются рациональные дроби P (x )/Q (x ), где в качестве Р и Q берутся алгебраические многочлены заданной степени.
В последнее время (60—70-е гг. 20 в.) значительное развитие получило приближение т. н. сплайн-функциями (сплайнами). Характерным их примером являются кубические сплайн-функции, определяемые следующим образом. Отрезок [a, b ] разбивается точками a = x0 < x1 <... < xn = b, на каждом отрезке [xk , xk+1 ] кубическая сплайн-функция является алгебраическим многочленом третьей степени, причём эти многочлены подобраны так, что на всём отрезке [а, b ] непрерывны сама сплайн-функция и её первая и вторая производные. Оставшиеся свободными параметры могут быть использованы, например, для того чтобы сплайн-функция интерполировала в узлах xk приближаемую функцию. Улучшение приближения достигается за счёт увеличения числа узлов xk правильного их расположения на отрезке [а, b ]. Сплайн-функции оказались удобными в вычислительной математике, с их помощью удалось решить также некоторые задачи теории функций.
Приближённые представления функций, а также сами функции на основе их приближённых представлений изучает теория приближений функций (употребляются также названия теория аппроксимации функций и конструктивная теория функций). К теории приближений функций обычно относят также задачи о приближении элементов в банаховых и общих метрических пространствах.
Теория приближений функций берёт начало от работ П. Л. Чебышева . Он ввёл одно из основных понятий теории — понятие наилучшего приближения функции полиномами и получил ряд результатов о наилучших приближениях. Наилучшим приближением непрерывной функции f (x ) полиномами ak jk (x ) в метрике С называется величина
En = min || f - ak jk (x )||c ,
где минимум берётся по всем числам а1 ,..., an . Полином, для которого достигается этот минимум, называется полиномом наилучшего приближения (для других метрик определения аналогичны). Чебышев установил, что наилучшее приближение функции xn+1 на отрезке [—1, 1] в метрике С алгебраическими многочленами степени n равно 1/2n , а многочлен наилучшего приближения таков, что для него
xn+1 - = (1/2n ) cos (n + 1) arccosx .
Следующая теорема Чебышева указывает характеристическое свойство полиномов наилучшего приближения в пространстве непрерывных функций: алгебраический многочлен , в том и только в том случае является многочленом наилучшего приближения непрерывной функции f в метрике С [—1, 1], если существуют n + 2 точки -1 £ x1 < x2 <... < xn+2 £ 1, в которых разность f (x ) — 2принимает максимальное значение своего модуля с последовательно чередующимися знаками.
Одним из первых результатов теории приближений является также теорема Вейерштрасса, согласно которой каждую непрерывную функцию можно приблизить в метрике С как угодно хорошо алгебраическими многочленами достаточно высокой степени.
С начала 20 в. началось систематическое исследование поведения при n ® ¥ последовательности En — наилучших приближений функции f алгебраическими (или тригонометрическими) многочленами. С одной стороны, выясняется скорость стремления к нулю величин En в зависимости от свойств функции (т. н. прямые теоремы теории приближений), а с другой — изучаются свойства функции по последовательности её наилучших приближений (обратные теоремы теории приближений). В ряде важных случаев здесь получена полная характеристика свойств функций. Приведём две такие теоремы.
Для того чтобы функция f была аналитической на отрезке (т. е. в каждой точке этого отрезка представлялась степенным рядом, равномерно сходящимся к ней в некоторой окрестности этой точки), необходимо и достаточно, чтобы для последовательности её наилучших приближений алгебраическими многочленами выполнялась оценка
En £ Aq n ,
где q < 1 и А — некоторые положительные числа, не зависящие от n (теорема С. Н. Бернштейна).
Для того чтобы функция f периода 2p имела производную порядка r, r = 0, 1,2,..., удовлетворяющую условию
- Большая Советская Энциклопедия (НЮ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (УК) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (СА) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ИВ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ИГ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (НУ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (БЫ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ХУ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (БХ) - БСЭ БСЭ - Энциклопедии
- Большая Советская Энциклопедия (ДЬ) - БСЭ БСЭ - Энциклопедии