Рейтинговые книги
Читем онлайн Удивительная генетика - Вадим Левитин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 40

Разумеется, все это гигантское бактериальное сообщество – отнюдь не бесполезные нахлебники, а наши верные друзья, добросовестно и неутомимо синтезирующие аминокислоты, витамины и ферменты, жизненно необходимые для нашего повседневного существования. Они выполняют и важную барьерную функцию, противодействуя вторжению патогенных микроорганизмов – дизентерийных, брюшнотифозных, гнилостных и прочих. Более того, сбалансированная и разнообразная кишечная микрофлора – бесспорный показатель здоровья.

Микрофлора кишечника человека под микроскопом

К сожалению, мы часто относимся к нашим симбионтам без должного уважения. Едва ли нужно напоминать, что неумеренный прием антибиотиков по поводу и без повода, выкашивающий целые популяции полезных микроорганизмов, сплошь и рядом приводит к развитию тяжелого дисбактериоза, справиться с последствиями которого оказывается весьма и весьма непросто.

Бактерии, как мы помним, относятся к числу доядерных организмов – прокариот, ибо оформленного ядра у них нет. Их ДНК, которую принято называть нуклеоидом, или бактериальной хромосомой (хотя с хромосомами эукариотических клеток она не имеет ничего общего), представляет собой собранную в клубок двойную спираль, замкнутую в кольцо. Этот эквивалент клеточного ядра свободно плавает в цитоплазме, не имеет собственной мембраны и не содержит белков, хотя обычно зафиксирован на мембране бактериальной клетки. При этом гены внутри нуклеоида расположены в линейном порядке, как и в клетке эукариот, а сам нуклеоид в функциональном отношении полностью соответствует геному ядерной клетки. Кроме того, в клетках прокариот встречаются небольшие кольцеобразные фрагменты ДНК, никак не связанные с нуклеоидом, – так называемые плазмиды.

В бактериальных клетках нет органелл, типичных для эукариотических клеток, – ни хлоропластов, ни митохондрий, ни центриолей. А рибосомы (структуры, отвечающие за белковый синтез) свободно плавают в цитоплазме, поскольку аналог эндоплазматической сети в клетках прокариот отсутствует. Размножаются они тоже иначе – амитотически, путем простого бинарного (поперечного) деления. Сначала происходит удвоение нуклеоида, причем оно всегда начинается в точке прикрепления к цитоплазматической мембране, где локализован ферментативный аппарат, за нее отвечающий. Редупликация (удвоение) ДНК запускает механизм синтеза клеточной стенки, которая растет от периферии к центру. Образуется перетяжка, и бактерия делится пополам. Деление может осуществляться не только в одной, но и в нескольких плоскостях, и тогда возникают клеточные цепочки или скопления различной формы. Вариантом бинарного деления является почкование, когда на теле материнской клетки образуется увеличивающийся вырост. Достигнув величины материнской клетки, почка отшнуровывается. В среднем бактерии делятся каждые 20 минут.

Итак, бактерия гораздо примитивнее эукариотической клетки, но рядом с вирусом она – воплощение сложности, уникальная фабрика, нацеленная на бесперебойный выпуск сотен различных белков и ферментов. А вирус даже клеточного строения не имеет. Все, что у него есть, – это молекула нуклеиновой кислоты, упакованная в белковую оболочку. Но такая конструктивная простота имеет и отрицательную сторону: чтобы продолжить свой род, вирус должен просочиться в живую клетку и завладеть всеми ее ресурсами. Без посторонней помощи он размножаться не умеет. Вне клетки-хозяина вирус мертв и не обнаруживает никаких признаков жизнедеятельности. Вирусологи называют своих подопечных строгими (облигатными) паразитами, поскольку весь их жиз ненный цикл неотделим от клетки, в которую они стремятся проникнуть.

Вирусы гораздо мельче бактерий и вообще любых одноклеточных микроорганизмов – от грибов до простейших. Поэтому их величину измеряют не в микронах, то есть миллионных долях метра, а в нанометрах (нм) – миллиардных долях метра. Другими словами, нанометр в тысячу раз меньше микрона. Например, поперечник амебы составляет примерно 50 микрон, а размеры вируса полиомиелита находятся в пределах 27–29 нанометров, то есть «по росту» он меньше амебы почти в две тысячи раз. Понятно, что отношение объемов их тел выражается еще большей цифрой со многими нулями. Самые большие вирусы достигают величин вполне «бактериальных» – например, вирус оспы человека и животных вырастает до 300 нм.

Разнообразием форм вирусные частицы (вирионы) не отличаются: чаще всего они похожи на миниатюрные шарики с выростами на поверхности или без них, а вирусы растений часто напоминают вытянутый цилиндр. Скажем, длина цилиндра вируса табачной мозаики достигает 350 нм, но разглядеть его в оптический микроскоп все равно невозможно, поскольку толщина этого цилиндра не превышает 15 нм. Нить с практически нулевой поперечной размерностью увидеть, естественно, нельзя.

Вирусы под микроскопом

Однако ничтожные размеры большинства вирусов – далеко не самое удивительное. Гораздо интереснее тот факт, что они – единственные на Земле живые организмы, не имеющие клеточного строения. Вирус устроен настолько просто, что больше напоминает какой-то механизм, а не живое существо. В сердцевине вирусной частицы лежит нуклеиновая кислота, окруженная снаружи белковыми молекулами, которые образуют своего рода защитный чехол – капсид. Белки (или белок) оболочки вируса, как и любые другие белки, сотканы из аминокислот, уложенных в длинные цепочки. Капсид – не монолитная конструкция: он построен из отдельных субъединиц (капсомеров), которые состоят, в свою очередь, из одной или нескольких идентичных или разных полипептидных цепей. Генетический материал в центре вириона может быть представлен любой из нуклеиновых кислот – как ДНК, так и РНК, и по этому параметру вирусы подразделяются на ДНК-содержащие и РНК-содержащие.

Вирусы различаются между собой не только по размерам, форме и строению генома (вирусная ДНК или РНК есть не что иное, как геном), но и по уровню сложности своей структуры. Если наиболее мелкие и простые вирусы состоят из обособленной молекулы РНК и белка, то у крупных вирионов можно обнаружить многослойную «упаковку», в состав которой входят не только белковые молекулы, но углеводы и липиды.

Например, конструкция бактериофагов[12], по форме напоминающих головастика или гимнастическую булаву, включает в себя шаровидную головку, где помещается нуклеиновая кислота, и полый чехол в виде длинного хвоста, собранный из молекул белка. С помощью этого выроста бактериофаг прикрепляется к оболочке бактериальной клетки, прокалывает клеточную мембрану и впрыскивает, как через шприц, свою нуклеиновую кислоту в цитоплазму бактерии.

А вирус иммунодефицита человека (ВИЧ), возбудитель СПИДа, представляет собой шарик диаметром 100 нм, поверхность которого утыкана многочисленными отростками, похожими на шляпки обойных гвоздей или головки шурупов. Это вирусный белок – гликопротеид, белково-углеводный комплекс (биологи обозначают его как gp 120), от которого зависит не только адсорбция (поглощение) вируса клеточной мембраной (а следовательно, начало инфекционного процесса), но и необычайная изменчивость вируса. Гликопротеидные «гвозди» пронизывают оболочку вируса и образуют под ней сложное переплетение, своего рода вироскелет, который сохраняет форму вириона и удерживает в определенном положении вирусную «начинку» – геном вируса.

Вирус иммунодефицита человека под микроскопом

Итак, даже относительно крупные и сложно организованные вирусы несопоставимо примитивнее любой клетки и гораздо меньше ее по размерам. Но тогда немедленно возникает вопрос: почему живая клетка, это воплощение гибкости и неприхотливости, замечательно умеющая выживать в горячих водах термальных источников и на арктическом льду, уникальная миниатюрная фабрика по бесперебойному синтезу белков и ферментов, так легко сдается на милость победителя? Почему она не в силах успешно противостоять столь незначительному врагу, которого и живым-то назвать можно с очень большой натяжкой? Чтобы разрешить этот парадокс, необходимо как следует разобраться в механизме репродукции убийц-невидимок.

На заре вирусологии ученые договорились считать, что вирусы – просто очень маленькие бактерии, размножающиеся вполне традиционно, посредством элементарного поперечного деления, когда из одной клетки образуются две, из них – четыре, и т. д. Наибольшая скорость деления, доступная бактериальным клеткам, исчисляется тремя удвоениями в час, и если бы вирус вел себя аналогично, то его потомство за три часа последовательных удвоений составило бы не более тысячи вирионов.

Но когда ученые сумели наконец вычислить истинный темп накопления вирионов в клетке, от стандартной модели не осталось и следа. Опыты с бактериофагами показали, что вирионы размножаются в 100 тысяч раз быстрее бактерий, давая уже через три часа потомство в 100 миллионов вирусных частиц. Стало ясно, что механизм репродукции вирусов не имеет ничего общего с «пополамным» делением бактерий.

1 ... 5 6 7 8 9 10 11 12 13 ... 40
На этой странице вы можете бесплатно читать книгу Удивительная генетика - Вадим Левитин бесплатно.

Оставить комментарий