Шрифт:
Интервал:
Закладка:
По мнению физиков, в моменты между планковским временем и сотыми долями секунды после Большого взрыва Вселенная вела себя аналогичным образом, испытав, по крайней мере, два подобных фазовых перехода. При температурах выше 1028 K все три негравитационные взаимодействия кажутся единым взаимодействием. Ситуация максимально симметрична. (В конце главы обсуждается как с помощью теории струн можно включить в этот высокотемпературный союз гравитационное взаимодействие.) Однако при понижении температуры ниже черты 1028 K во Вселенной происходит фазовый переход, при котором три силы природы выкристаллизовываются по-разному в разные типы взаимодействий. Их относительные величины и детали того, как они воздействуют на материю, начинают различаться. Очевидная при высоких температурах симметрия этих взаимодействий разрушается при охлаждении Вселенной. Однако, как показали Вайнберг, Салам и Глэшоу (см. главу 5), пропадает не вся высокотемпературная симметрия: между слабыми и электромагнитными взаимодействиями сохраняется глубокая связь. По мере дальнейшего понижения температуры ничего необычного не происходит до отметки 1015 K (в 100 миллионов раз больше температуры Солнца), когда во Вселенной происходит ещё один переход, разъединяющий электромагнитные и слабые взаимодействия. Они тоже обособляются, разрушая более симметричный союз, и различие между ними растёт с понижением температуры Вселенной. Этими двумя фазовыми переходами определяется наличие трёх разных типов негравитационного взаимодействия, хотя приведённый обзор истории Вселенной говорит об их близком родстве.
Космологическая загадкаРассмотренная космология пост-планковской эры даёт элегантный, самосогласованный и пригодный для вычислений формализм, позволяющий понять структуру, которую имела Вселенная через малые доли секунды после Большого взрыва и вплоть до нашего времени. Но, как это обычно бывает с удачными теориями, новые результаты приводят ко всё более обстоятельным вопросам. Оказывается, что некоторые из этих вопросов, не умаляя важности представленного стандартного космологического сценария, всё же высвечивают ряд нелепостей, вызывающих необходимость создания более глубокой теории. Остановимся на одной из них, так называемой проблеме горизонта, являющейся одним из важнейших вопросов современной космологии.
Скрупулёзные исследования реликтового излучения показывают, что с точностью до тысячной доли процента температура излучения одинакова для всех точек неба, на которые направлена измерительная антенна. Если немного задуматься над этим фактом, он может показаться странным. С какой стати температуры различных точек Вселенной, разделённых огромными расстояниями, должны совпадать так точно? Напрашивается естественное на первый взгляд разрешение парадокса: не важно, что эти точки находятся сегодня в диаметрально противоположных областях неба, подобно разлучённым близнецам, они (как и все остальные точки) находились очень близко друг к другу в первые моменты после Большого взрыва. И так как все области образовались из общей начальной точки, совсем не удивительно, что у них одни и те же физические характеристики, в частности их температура.
В стандартной космологии Большого взрыва это объяснение не годится. И вот почему. Тарелка горячего супа постепенно охлаждается до комнатной температуры, так как она соприкасается с более холодным воздухом. Но если суп находится в термосе, он, разумеется, останется горячим гораздо дольше, так как его контакт с окружающей средой намного слабее. Это говорит о том, что выравнивание температур двух тел происходит при длительном и беспрепятственном контакте. Поэтому для проверки того, что ныне далеко удалённые области должны иметь одинаковые температуры из-за их исходного контакта, нужно оценить интенсивность обмена между ними на ранней стадии эволюции Вселенной. Здесь тоже можно сначала предположить, что из-за непосредственной близости в начальные моменты контакт между областями был даже ещё сильнее. Однако пространственная близость — это только полдела. Вторая половина — это длительность контакта.
Чтобы лучше разобраться в этой ситуации, представим себе, что мы смотрим фильм, в котором запечатлено космическое расширение, но плёнку крутят в обратную сторону, и мы возвращаемся в прошлое к моменту Большого взрыва. Так как скорость передачи любого сигнала или любых характеристик ограничена скоростью света, обмен тепловой энергией между материей в двух областях пространства, приводящий к выравниванию температур, может происходить лишь тогда, когда расстояние между областями в данный момент меньше, чем расстояние, которое мог бы пройти свет с момента Большого взрыва. И теперь, прокручивая назад плёнку, мы видим, что существует соревнование между расстоянием, которым разделены две области, и временем, на которое нужно повернуть назад часы, чтобы эти области оказались объединёнными вместе. Например, если для разделения областей на 300 000 км мы должны отмотать плёнку до момента времени, меньшего одной секунды после Большого взрыва, то, несмотря на близость областей в тот момент, у них не будет возможности для контакта, ибо свету нужна целая секунда, чтобы пройти это расстояние.{129} Если расстояние гораздо меньше, например 300 км, но для этого плёнку нужно промотать до момента времени, меньшего тысячной доли секунды после Большого взрыва, вывод тот же: эти области не могут влиять друг на друга, так как свет не сможет преодолеть эти 300 км менее чем за тысячную доли секунды. И так далее: если расстояние равно 30 см, но требуется промотать плёнку до момента, меньшего миллиардной доли секунды, влияние снова невозможно. Пример демонстрирует, что из непосредственной близости двух точек в первые моменты после Большого взрыва не обязательно следует то, что между ними, как между супом и воздухом, возможен тепловой контакт, необходимый для выравнивания температур.
Физики обнаружили, что та же проблема возникает и в модели Большого взрыва. Детальные расчёты показывают, что для областей пространства, разделённых сейчас огромными расстояниями, не было возможности обмена тепловой энергией в ранние моменты времени, которым объяснялось бы равенство их температур сейчас. А так как слово горизонт относится к кругу видимых нами объектов, образно говоря, к точкам, куда может дойти свет, физики назвали неожиданную однородность температур в космических просторах «парадоксом горизонта». Он не означает, что стандартная космологическая модель неверна. Но однородность температур говорит о том, что в описании космологии не достаёт какой-то важной детали. В 1979 г. физик Алан Гут, работающий сейчас в Массачусетсом технологическом институте, дописал недостающую главу.
ИнфляцияПричина возникновения парадокса горизонта заключается в том, что для сближения двух удалённых областей Вселенной приходится прокручивать плёнку фильма о космической эволюции назад во времени. Так далеко назад, что для передачи какого-либо физического воздействия времени остаётся слишком мало. И проблема возникает из-за того, что при обратной прокрутке к моменту Большого взрыва Вселенная сжимается недостаточно быстро.
Конечно, это лишь грубая идея, так что имеет смысл рассмотреть вопрос чуть подробнее. Эффект, вызывающий парадокс горизонта, подобен замедлению брошенного вверх мяча: под действием гравитационного притяжения скорость расширения Вселенной уменьшается. Из этого, в частности, следует, что для сокращения расстояния между двумя точками вдвое необходимо прокрутить плёнку не к середине отрезка от начала фильма, а ещё ближе к началу. В свою очередь, чтобы уменьшить вполовину пространственное разделение, придётся более чем вполовину разделить время с момента Большого взрыва. Чем меньше времени прошло с момента Большого взрыва, тем меньше возможности для передачи воздействия между двумя областями, несмотря на то, что эти области будут ближе друг к другу.
Теперь несложно дать объяснение парадокса горизонта, предложенное Гутом. Он нашёл другое решение уравнений Эйнштейна, в котором ранняя Вселенная проходит очень короткий этап чрезвычайно быстрого расширения, внезапно раздуваясь по экспоненциальному закону. В отличие от примера с мячом, замедляющимся при движении вверх, при экспоненциальном законе скорость расширения увеличивается. Если теперь прокручивать назад нашу плёнку, то ускоренное расширение станет замедленным сжатием. Поэтому для сокращения расстояния вдвое (в период экспоненциальной эры) понадобится прокрутить плёнку меньше, чем до середины отрезка с начала фильма, на самом деле гораздо меньше. Меньшая обратная прокрутка означает, что у двух областей будет больше времени на тепловой контакт и у них, как у супа и воздуха, будет достаточно времени, чтобы выровнять температуры.
- Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан - Физика
- Ткань космоса: Пространство, время и текстура реальности - Брайан Грин - Физика
- Мир физики и физика мира. Простые законы мироздания - Джим Аль-Халили - Прочая научная литература / Физика
- Беседа с Г.И.Шиповым - В. Жигалов - Физика
- В поисках частицы Бога, или Охота на бозон Хиггса - Иэн Сэмпл - Физика
- Неизвестный алмаз. «Артефакты» технологии - Владимир Карасев - Физика
- Коллайдер - Пол Хэлперн - Физика
- Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, антивещество и бозон Хиггса - Дэйв Голдберг - Физика
- Предчувствия и свершения. Книга 1. Великие ошибки - Ирина Львовна Радунская - Физика
- Популярно о конечной математике и ее интересных применениях в квантовой теории - Феликс Лев - Математика / Физика