Шрифт:
Интервал:
Закладка:
Таким образом, формула (28.5) дает полное и точное описание процесса излучения; в ней содержатся даже все релятивистские эффекты. Однако часто встречается более простая ситуация, когда заряды передвигаются с малой скоростью и на небольшие расстояния. Поскольку заряды движутся медленно, расстояния, которые они проходят с момента излучения, невелики, так что время запаздывания оказывается практически постоянным. В этом случае формула (28.5) упрощается. В самом деле, пусть заряд совершает малые смещения и находится примерно на одном и том же расстоянии от точки наблюдения. Время запаздывания на расстоянии r есть r/с. Тогда наше правило (определяющее поле излучения) будет выражаться так: если заряженное тело сдвигается на малые расстояния и боковое смещение есть x(t), то единичный вектор er' поворачивается на угол x/r, и поскольку r практически постоянно, то составляющая d2er'/dt2 в направлении x равна просто ускорению самой величины x в более ранний момент времени. В результате мы приходим к формуле
(28.6)
Сюда входят только составляющая ах, перпендикулярная лучу зрения. Попробуем понять, почему это так. В самом деле, когда заряд движется прямо к нам или от нас, единичный вектор в направлении заряда не смещается и ускорение равно нулю. Поэтому для нас существенно только боковое движение, т. е. только та часть ускорения, которая проектируется на экран.
§ 3. Дипольный излучатель
Примем формулу (28.6) в качестве основного закона электромагнитного излучения, т. е. будем считать, что электрическое поле, создаваемое нерелятивистски движущимся зарядом на достаточно больших расстояниях r, имеет вид (28.6). Электрическое поле обратно пропорционально r и прямо пропорционально ускорению заряда, спроектированному на «плоскость зрения», причем ускорение берется не в данный момент времени, а в более ранний (время запаздывания равно r/с). Вся оставшаяся часть главы будет посвящена приложению закона (28.6) к всевозможным явлениям распространения света и радиоволн, таким, как отражение, преломление, интерференция, дифракция и рассеяние. Закон (28.6) имеет фундаментальное значение и содержит всю необходимую для нас информацию. Остальная часть формулы (28.3) только декорация и нужна лишь для того, чтобы понять, как и почему возник закон (28.6).
В дальнейшем мы еще вернемся к формуле (28.3), а пока примем ее как нечто данное и отметим, что справедливость ее основывается не только на теоретических выводах. Можно придумать целый ряд опытов, в которых проявлялось бы действие закона (28.3). Для этого необходим ускоряющийся заряд. Строго говоря, заряд должен быть одиночным, но, если взять большое количество зарядов, движущихся одинаково, поле представится суммой вкладов отдельных зарядов. Для примера рассмотрим два отрезка проволоки, присоединенных к генератору, как показано на фиг. 28.1. Суть дела в том, что генератор создает разность потенциалов или поле, которое в один момент времени выталкивает электроны из участка А и втягивает их в участок В, а через ничтожно малый промежуток времени действие поля становится обратным и электроны из В перекачиваются обратно в А!
Фиг. 28.1. Высокочастотный генератор раскачивает электроны в проволоках вверх и вниз.
Так что в этих двух проволочках заряды на участках А и В как бы ускоряются одновременно то вверх, то вниз. Две проволоки и генератор нужны только в этом устройстве. Окончательный же результат таков, что заряды ускоряются вверх и вниз так, как если бы А и В составляли один кусок проволоки. Отрезок проволоки, длина которого очень мала по сравнению с расстоянием, проходимым светом за один период колебаний, называется электрическим диполъным осциллятором.
Таким образом, у нас есть прибор для создания электрического поля; теперь нам нужен прибор для детектирования электрического поля, но для этого можно взять то же самое устройство — пару проволок А и B! Если к такому устройству приложить электрическое поле, возникнет сила, движущая электроны по обеим проволокам либо вверх, либо вниз. Это движение фиксируется с помощью выпрямителя, смонтированного между проволоками А и В, а информация передается по тонкой проволоке в усилитель, где сигнал усиливается и воспроизводится со звуковой частотой путем модуляции радиочастот. Когда детектор воспринимает электрическое поле, из громкоговорителя доносится громкий звук; если поля нет, звука не возникает.
В помещении, где мы детектируем волны, обычно находятся и другие объекты, и электрическое поле тоже раскачивает в них электроны; они колеблются вверх и вниз и в свою очередь воздействуют на детектор. Поэтому для успешного эксперимента расстояние между источником волн и детектором не должно быть большим, чтобы снизить влияние волн, отраженных от стен и от нас самих. Таким образом, опыт может дать результаты, не вполне точно совпадающие с (28.6), но достаточные для грубой проверки нашего закона.
Включим теперь генератор и прислушаемся к звуковому сигналу. Когда детектор D находится в положении, параллельном генератору G в точке 1 (фиг. 28.2), мы услышим громкий сигнал (это характеризует большую величину поля). Ту же величину поля мы найдем и для любого азимутального угла q, получаемого вращением вокруг оси G, потому что в нашем опыте ни одно азимутальное направление не выделено.
Фиг. 28.2. Измерение электрического поля в точках окружности, центр которой совпадает с положением линейного осциллятора.
С другой стороны, когда детектор находится в точке 3, поле оказывается равным нулю. Так и должно быть. Согласно нашей формуле, поле пропорционально ускорению заряда, спроектированному на плоскость, перпендикулярную лучу зрения. Когда детектор находится над генератором в точке 3, заряды движутся к детектору и обратно и, следовательно, поле не должно возникнуть. Итак, опыт подтверждает первое высказанное нами правило, что заряды, движущиеся в направлении D и обратно, никакого действия не оказывают. Во-вторых, из формулы следует, что поле перпендикулярно r и лежит в плоскости, построенной на векторах G и r; поэтому, поместив D в положение 1 и повернув на 90°, мы сигнала не услышим. Это как раз и означает, что электрическое поле направлено по вертикали. Если D смещено на некоторый промежуточный угол, наиболее громкий сигнал получается при ориентации детектора, указанной на рисунке. Дело в том, что, хотя генератор G и расположен вертикально, создаваемое им поле не будет параллельно направлению самого генератора; эффект определяется составляющей ускорения, перпендикулярной лучу зрения. В положении 2 сигнал оказывается слабее, чем в положении 1 именно из-за эффекта проектирования.
§ 4. Интерференция
Возьмем теперь два источника, расположенных рядом, на расстоянии в несколько сантиметров один от другого (фиг. 28.3). Если оба источника присоединены к одному генератору и заряды в них движутся вверх и вниз одинаковым образом, то по принципу суперпозиции действия обоих источников складываются; электрическое поле равно сумме двух слагаемых и оказывается в два раза больше, чем в предыдущем случае.
Фиг. 28.3. Интерференция полей от двух источников.
Здесь появляется интересная возможность. Пусть заряды в S1 и S2 ускоряются вверх и вниз, но в S2 движение зарядов запаздывает и сдвинуто по фазе на 180°. Тогда в один и тот же момент времени поле, создаваемое S1 будет иметь одно направление, а поле, создаваемое S2,— противоположное, и, следовательно, в точке 1 никакого эффекта не возникнет. Относительную фазу колебаний легко создать с помощью трубки, передающей сигнал в S2. При изменении длины трубки меняется и время прохождения сигнала до S2, а следовательно, меняется разность фаз колебаний. Подобрав нужную длину трубки, мы можем добиться такого положения, что сигнал исчезнет, несмотря на движение зарядов в источниках S1 и S2! Излучение каждого источника в отдельности легко установить, выключая один из них; тогда действие второго обнаруживается сразу. Таким образом, если все сделать аккуратно, оба источника в совокупности могут дать нулевой эффект.
Теперь интересно убедиться, что сложение двух полей фактически есть векторное сложение. Мы только что рассмотрели случай движения зарядов вверх и вниз; обратимся теперь к примеру двух непараллельных движений. Прежде всего установим для S1 и S2 одинаковые фазы, т. е. пусть заряды движутся одинаково. Далее повернем S1 на угол 90°, как показано на фиг. 28.4. В точке 1 произойдет сложение двух полей, одного от горизонтального источника, а другого — от вертикального.
Фиг. 28.4. Иллюстрация векторного характера сложения полей.
- Предчувствия и свершения. Книга 1. Великие ошибки - Ирина Львовна Радунская - Физика
- 9. Квантовая механика II - Ричард Фейнман - Физика
- 6. Электродинамика - Ричард Фейнман - Физика
- 8. Квантовая механика I - Ричард Фейнман - Физика
- Теория относительности — мистификация ХХ века - Владимир Секерин - Физика
- Новый этап в развитии физики рентгеновских лучей - Александр Китайгородский - Физика
- Многоликий солитон - Александр Филиппов - Физика
- Занимательное волноведение. Волненя и колебания вокруг нас - Гэвин Претор-Пинни - Физика
- Новый сборник статей по физике пространства. Наука будущего - Анатолий Трутнев - Физика
- Мир физики и физика мира. Простые законы мироздания - Джим Аль-Халили - Прочая научная литература / Физика