Шрифт:
Интервал:
Закладка:
Как теперь получить формулу для электрического и магнитного поля одного заряда? Оказывается, это очень сложно; понадобится затратить много труда и использовать тонкие доказательства. Но не в этом дело. Мы написали законы, собственно, чтобы подчеркнуть красоту природы, показать, что все основные законы можно уместить на одной странице (с обозначениями читатель уже знаком). Точная и вполне строгая формула для поля, создаваемого отдельным зарядом, насколько мы знаем, имеет очень сложный вид (мы отвлекаемся от эффектов квантовой механики). Поэтому мы не будем выводить ее подробно, а запишем сразу, как она выглядит. На самом деле правильнее было бы записать законы электричества и магнетизма с помощью уравнений поля, о которых будет сказано позднее. Но там используются совсем иные понятия и обозначения, поэтому давайте сейчас напишем выражения для поля в уже знакомой нам форме, хотя она и не очень удобна для вычислений.
Электрическое поле Е дается выражением
(28.3)
Что означают отдельные члены в этом выражении? Возьмем первый из них,
Е=-qer’/4pe0r'2. Это уже знакомый нам закон Кулона; здесь q — заряд, создающий поле, er' - единичный вектор, направленный от точки Р, где измеряется поле Е, r — расстояние от Р до q. Но закон Кулона неточен. Открытия, сделанные в XIX веке, показали, что любое воздействие не может распространяться быстрее некоторой фундаментальной скорости с, называемой теперь скоростью света. Поэтому определить положение заряда в настоящий момент времени невозможно. Кроме того, на поле в данный момент времени может влиять только поведение заряда в прошлом. А как давно в прошлом? Задержка во времени, или так называемое время запаздывания, есть время, необходимое для прохождения расстояния от заряда до точки измерения поля Р со скоростью света с. Время запаздывания равно r'/с. Таким образом, первый член в (28.3) представляет собой не обычный, а запаздывающий закон Кулона.
Чтобы учесть запаздывание, мы поставили штрих у r, понимая под r' то расстояние, на которое в начальный момент своего воздействия был удален заряд q от точки Р. Представим на минуту, что заряд несет с собой световые сигналы, которые движутся к точке Р со скоростью c. Тогда, глядя на заряд q, мы увидели бы его не в том месте, где он находится сейчас, а там, где он был некоторое время назад. В нашу формулу входит кажущееся направление er', так называемое запаздывающее направление, и запаздывающее расстояние r'. Это легко понять, но это еще не все. Дело, оказывается, еще гораздо сложнее.
В выражении (28.3) имеется и ряд других членов. Вторым членом природа как бы учитывает запаздывание в первом грубом приближении. Это поправка к запаздывающему кулоновскому члену; она представляет собой произведение скорости изменения кулоновского поля и времени запаздывания. Но и это не все. Есть еще третий член — вторая производная по t единичного вектора, направленного к заряду. Этим исчерпывается формула; мы учли все вклады в электрическое поле от произвольно движущегося заряда.
Магнитное поле выражается следующим образом:
(28.4)
Все предыдущее мы написали, чтобы показать красоту природы и, в некотором смысле, могущество математики. Говоря откровенно, мы даже не пытаемся понять, почему столь значительные по содержанию формулы занимают так мало места, ведь в них содержится и принцип действия генераторов тока, и особенности поведения света — словом, все явления электричества и магнетизма. Конечно, для полноты картины нужно добавить еще кое-что о свойствах использованных материалов (свойствах вещества), которые пока не учтены в (28.3).
Заканчивая краткое описание представлений о мире в XIX веке, следует упомянуть еще об одном фундаментальном обобщении, к которому в большой степени причастен и Максвелл, а именно о единстве явлений механики и теплоты. Мы будем говорить об этом в ближайшем будущем.
В XX столетии обнаружили, что все законы динамики Ньютона неправильны, и чтобы уточнить их, воспользовались квантовой механикой. (Законы Ньютона справедливы для тел достаточно больших размеров.) Совсем недавно законы квантовой механики в совокупности с законами электромагнетизма послужили основой для открытия законов квантовой электродинамики. Кроме того, был открыт ряд новых явлений, и раньше других — явление радиоактивности, открытое Беккерелем в 1898 г. (он похитил его из-под самого носа у XX столетия). Явление радиоактивности послужило началом развития науки о ядрах, новых частицах и о взаимодействиях совсем другого рода — не гравитационных и не электрических. Все эти вопросы еще ждут своего разрешения.
Для уж очень строгих и образованных читателей (скажем, профессоров, которым случится читать эти строки) специально добавим: наше утверждение, что выражение (28.3) содержит все известное из электродинамики, не совсем точно. Существует вопрос, который так и не был разрешен к концу XIX столетия. Если попробовать вычислить поле, создаваемое всеми зарядами, включая и тот заряд, на который в свою очередь действует поле, то возникнут трудности при попытке определить, например, расстояние от заряда до него самого и последующей подстановке этой величины, равной нулю, в знаменатель. Как быть с той частью поля, которая создается зарядом и на него же действует, до сих пор не понятно. Оставим этот вопрос, загадка не разгадана до конца, и мы по возможности будем избегать говорить о ней.
§ 2. Излучение
Перейдем от общей картины мира к явлениям излучения. Прежде всего мы должны выбрать тот член в выражении (28.3), который спадает обратно пропорционально первой (а не второй!) степени расстояния. Оказывается, что этот член имеет столь простой вид, что если принять его в качестве закона поведения электрического поля, создаваемого движущимся зарядом на больших расстояниях, то можно излагать электродинамику и оптику на элементарном уровне. Мы временно примем этот закон без доказательства, а позже изучим его подробнее.
Первый член в правой части (28.3) явно обратно пропорционален второй степени расстояния; легко показать, что и второй член, дающий поправку на запаздывание для первого, меняется таким же образом. Весь интересующий нас эффект заключен в третьем члене, и в общем он не так уж сложен. Этот член говорит нам следующее: посмотрите на заряд и заметьте направление единичного вектора (конец вектора скользит по поверхности единичной сферы). По мере движения заряда единичный вектор крутится, и его ускорение есть именно то, что нам нужно. Вот и все. Итак,
(28.5)
Формула (28.5) выражает закон излучения, потому что единственный член, который она содержит, спадает обратно пропорционально расстоянию и, следовательно, доминирует на больших расстояниях от заряда. (Часть, меняющаяся обратно пропорционально квадрату расстояния, становится настолько малой, что не представляет интереса.)
Продвинемся несколько вперед и выясним смысл формулы (28.5). Пусть заряд движется произвольным образом и мы наблюдаем его на некотором расстоянии. Представим на минуту, что заряд «светится» (хотя именно явление света мы и должны объяснить); итак, пусть заряд есть светящаяся белая точка. Мы видим движение этой точки. Но мы не можем точно определить, как она движется в данный момент, из-за упоминавшегося уже ранее запаздывания. Имеет смысл говорить только о том, как она двигалась в более ранний момент времени. Единичный вектор er’ направлен к кажущемуся положению заряда. Конец вектора er’, естественно, описывает некую кривую, так что ускорение имеет две составляющие. Одна из них — поперечная составляющая, возникающая из-за движения конца вектора вверх и вниз, а другая — радиальная, или продольная, возникающая из-за вращения конца вектора по сфере. Легко показать, что вторая составляющая много меньше первой и изменяется обратно пропорционально квадрату r для очень больших r. В самом деле, если отодвигать источник все дальше и дальше от точки наблюдения, колебания вектора er' будут становиться все слабее (обратно пропорционально расстоянию), а продольная составляющая ускорения будет убывать еще быстрее. Поэтому для практических целей достаточно спроектировать движение заряда на плоскость, находящуюся на единичном расстоянии. В результате мы приходим к следующему правилу: пусть мы наблюдаем движущийся заряд и все, что мы видим, запаздывает во времени, т. е. мы находимся в положении художника, который рисует пейзаж на полотне, стоящем от него на расстоянии единицы длины. Конечно, художник не учитывает тот факт, что скорость света конечна, а изображает мир таким, каким он его видит. Посмотрим, что он нарисует на этой картине. Мы увидим точку (изображение заряда), движущуюся по картине. Ускорение этой точки пропорционально электрическому полю. Вот и все, что нам нужно.
- Предчувствия и свершения. Книга 1. Великие ошибки - Ирина Львовна Радунская - Физика
- 9. Квантовая механика II - Ричард Фейнман - Физика
- 6. Электродинамика - Ричард Фейнман - Физика
- 8. Квантовая механика I - Ричард Фейнман - Физика
- Теория относительности — мистификация ХХ века - Владимир Секерин - Физика
- Новый этап в развитии физики рентгеновских лучей - Александр Китайгородский - Физика
- Многоликий солитон - Александр Филиппов - Физика
- Занимательное волноведение. Волненя и колебания вокруг нас - Гэвин Претор-Пинни - Физика
- Новый сборник статей по физике пространства. Наука будущего - Анатолий Трутнев - Физика
- Мир физики и физика мира. Простые законы мироздания - Джим Аль-Халили - Прочая научная литература / Физика