Шрифт:
Интервал:
Закладка:
6. Область допустимых состояний Ωдоп и соответствующие ей xдоп изменяются в процессе функционирования и определяются экспериментально или теоретически.
7. Для предотвращения потерь и наилучшего достижения цели динамическая система должна включать в себя системы контроля и управления.
8. Система контроля обладает погрешностями, что обусловливает в процессе функционирования динамической системы необходимость строить область допустимых состояний Ωкдоп. При этом, как правило, Ωдоп и Ωкдоп не совпадают, т. е. Ωкдоп Ωдоп.
9. Оператор (человек), используя информационно-измерительную систему для управления, получает измеренные значения контролируемых параметров, которые обозначим xизм.
10. На выходе динамической системы реализуются фактические значения параметров, которые обозначим xф. При этом xизм = xф + δх, где векторный случайный процесс δх – погрешность информационно-измерительной системы.
11. Фактические значения параметров xф, в силу объективных причин, обусловленных внешними возмущениями и внутренними шумами, а также субъективными причинами, свойствами управлений от человека, изменяющимися случайным образом, представляют собой случайные процессы. На этапе анализа динамической системы векторный процесс xф должен задаваться с помощью математических моделей.
12. Для компенсации влияния δх на величину риска вводятся такие допустимые при контроле значения xкдоп и соответствующая им область Ωкдоп Ωдоп, которые в одномерном случае записываются в виде |xдоп – xкдоп| > 0, когда реализуется требование xдоп ≠ xкдоп.
13. При контроле над динамическими процессами, когда скорость изменения процесса во времени ≠ 0, необходимо вводить дополнительный запас, например, в виде = k || и вектор хдиндоп = хдоп ± . В результате имеем Ωкдоп Ωдиндоп Ωдоп при двустороннем и одностороннем ограничении.
14. Предотвращение потерь состоит в обеспечении условия xф(t) Ωдоп(t) для любого момента времени t функционирования динамической системы. Для целей управления мы располагаем величиной xизм, кроме того, система контроля индуцирует не область Ωдоп, а Ωкдоп. При этом хкдоп = хдоп + δхдоп, где δxдоп – погрешность функционирования системы контроля, а xкдоп задает границы Ωкдоп. В этих условиях можно обеспечить только условие хизм Ωкдоп, а это означает, что возможен выход xф из области Ωдоп, что может привести к соответствующим потерям и рискам.
15. В силу того, что процессы xф и xизм являются случайными, в качестве меры риска будем рассматривать вероятности P событий, приводящие, например, к экономическим, техническим, финансовым и другим потерям.
16. С учетом сказанного, необходимо разработать показатели риска
P = P(xдоп, xдиндоп, xкдоп, Моk(хф), Моk(хизм), a, b),
где Моk(хф) – центральный момент k-го порядка векторного случайного процесса xф для всех k N; Моk(хизм) – центральный момент k-го порядка векторного случайного процесса xизм; векторные величины a, b – параметры системы.
17. Полученные расчетным путем вероятности Рi уточняются в процессе функционирования динамической системы. В общем случае уточняются как Pi, так и область Ωкдоп.
Рассмотрим математическую модель вероятностных показателей риска и безопасности с учетом введенных понятий.
1.6.2. Вероятностное пространство событий. Вводные замечания
Поиск решения задачи в работе осуществляется при следующих допущениях относительно контролируемого и ограничиваемого индикатора x:
– критическое значение параметра состояния постоянно и не зависит от времени (xкр = const);
– фактические и измеренные значения параметра представляют собой случайные процессы с известным законом распределения;
– превышение параметром (когда ограничение сверху) величины xкр на любом интервале времени ведет к критической ситуации.
Введем необходимые обозначения.
Текущее, или фактическое, значение параметра запишем в виде xф = xн + Δx, где xн – номинальное значение (математическое ожидание) параметра; Δx – отклонение параметра движения x относительно xн. Обозначим через δx погрешность измерения параметра. Тогда измеренная величина параметра контроля x будет определяться суммой:
xизм = xн + Δx + δx.
Обозначим α xн + Δx = хф; β δx; γ xизм = α + β ( означает равенство по определению); xвдоп xв, xндоп xн – соответственно верхнее и нижнее допустимые значения хф; xквдоп , xкндоп – для измеренных значений x верхнее и нижнее допустимые соответственно; xн < < < xв (рис. 1.35).
Очевидно, что по известным вероятностным характеристикам (Δx, δx, xизм) находятся вероятностные характеристики (α, β, γ) и наоборот. При этом рассматривается вектор (α,γ) зависимых случайных процессов, в частности стационарных, а α и β – независимые случайные процессы (величины).
В процессе выполнения поставленной цели относительно фактических и измеренных значений возможны следующие события.
1. Фактическое значение α параметра находится в области допустимых значений, т. е. на одном из трех отрезков, принадлежащих промежутку [xн, хв] (рис. 1.35). Тогда имеем событие Аα {(xн ≤ α ≤ ) ( ≤ α ≤ ) ( ≤ α ≤ хв)}.
2. Фактическое значение α находится вне области допустимых состояний, превышая хв (рис. 1.36). В итоге имеем Вα {α > хв}.
3. Фактическое значение α находится вне области допустимых состояний, не достигая хн (рис. 1.37). В итоге имеем Cα {α ≤ хн}.
Рис. 1.35
Рис. 1.36
4. Измеренное значение γ индикатора х состояния динамической находится в области допустимых состояний объекта (рис. 1.38). В этом случае имеем событие Aγ { ≤ γ ≤ }.
Рис. 1.37
- Математика для любознательных - Яков Перельман - Математика
- Том 12. Числа-основа гармонии. Музыка и математика - Хавьер Арбонес - Математика
- Популярно о конечной математике и ее интересных применениях в квантовой теории - Феликс Лев - Математика / Физика
- Криптография и свобода - Михаил Масленников - Математика
- Вероятность как форма научного мышления - Виктор Лёвин - Математика
- φ – Число Бога. Золотое сечение – формула мироздания - Марио Ливио - Математика
- Том 9. Загадка Ферма. Трехвековой вызов математике - Альберт Виолант-и-Хольц - Математика
- Древние мифы и физика. Алгебра, логика и физика о реальности времени - Александр Мальцев - Математика
- Сферландия - Дионис Бюргер - Математика
- Русско-Ордынская империя - Анатолий Фоменко - Математика