Рейтинговые книги
Читем онлайн Психология оценки и принятия решений - Скотт Плаус

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 19 20 21 22 23 24 25 26 27 ... 63

Это звучит как вполне резонное правило, но взгляните, что выйдет, если следовать ему. Если сравнить помощника А и помощника Б, нужно выбрать второго, так как их IQ не отличается больше, чем на 10 пунктов, а Б более опытен, чем А. Также, сравнивая Б и В, нужно выбрать В, так как разница их IQ не больше 10, но В более опытен. Если сравнить В и А, то надо выбрать А, так как его IQ более чем на 10 пунктов выше, чем IQ В. Итак, помощник Б лучше помощника А, В — лучше Б, а А — лучше В. Таким образом, появляется нетранзитивность, поскольку правило выбора основано на двух разных параметрах — уме и опыте — различающихся очень слабо и обратно пропорциональных.

Действительно ли люди опровергают принцип нетранзитивности? В 1969 году Амос Тверски опубликовал исследование, одна треть участников которого поступала нетранзитивно. Тверски начал эксперимент с того, что ознакомил 18 Гарвардских дипломников с пятью лотереями, представленными на рис. 8.4. Как вы можете видеть, ожидаемая ценность каждой лотереи повышается шансом на выигрыш и понижается его размером. Студентам наугад показывали пары лотерей и просили сказать, какую бы они предпочли. После того как они сделали три вы-

119

РИСУНОК 8.4

Следующие азартные игры были использованы в 1969 году в эксперименте Амоса Тверски. Ожидаемая ценность (ОЦ) каждой игры вычислена путем умножения суммы выигрыша на вероятность победы.

Игра

Вероятность победы

Стоимость ($)

ОЦ (*

А

7/24

5,00

1,46

Б

8/24

4,75

1,58

В

9/24

4,50

1,69

Г

10/24

4,25

1,77

Д

11/24

4,00

1,83

бора из 10 возможных пар (А и Б, А и В и т.д.),Тверски выбрал 8 испытуемых, показавших тенденцию к нетранзитивности, и попросил их приходить к нему в лабораторию раз в неделю для интенсивного пятинедельного эксперимента.

Он обнаружил, что шесть студентов демонстрировали нетранзитивность с постоянством, заслуживающим лучшего применения. Из двух альтернатив, где вероятность выигрыша различалась мало (например, в паре А и Б), они выбирали ту лотерею, где выигрыш был больше. И наоборот, когда разница была максимальной (например, в паре А и Д), испытуемые выбирали ту лотерею, где вероятность выигрыша была выше. Итак, лотерею А они предпочитали лотерее Б, лотерею Б — лотерее В, лотерею В — лотерее Г, лотерею Г — лотерее Д, а лотерею Д — лотерее А. Тверски обнаружил непереходность в примере с помощниками.

Нетранзитивность — это нечто большее, чем просто экспериментальный курьез; она может иметь важное влияние на принимающих решение. Например, «проблема комитета». В ее типичной версии существует совет факультета, состоящий из пяти человек: Энн, Боба, Синди, Дэна и Эллен. Их задача — выборы нового профессора и оценки трем претендентам по трехбалльной системе — показана на рис. 8.5.

РИСУНОК 8.5

Это распределение предпочтений в типичной версии проблемы комитета. Более низкие баллы обозначают большее предпочтение (например, Энн предпочитает, скорее, Джо Шмоу нежели Джейн Доу, и Джейн Доу — нежели Эйнштейна).

ЧЛЕНЫ КОМИССИИ

Кандидаты

Энн

Боб

Синди

Дэн

Эллен

Джо Шмоу Джейн Доу Эйнштейн

1 2 3

1 3 2

2 3 1

3 1 2

3 1 2

120

Представьте, что вы глава комитета, вы знаете всех претендентов и хотели бы, чтобы выбрали Эйнштейна. Что вы сделаете?

Ответ следующий: вы должны избежать прямого выбора между Эйнштейном и Джейн Доу, потому что трое членов комитета предпочли Доу Эйнштейну (Энн, Дэн и Эллен). Вместо этого вы должны попросить членов комитета выбрать между Шмоу и Доу и после того, как Шмоу победит, попросить выбрать между Шмоу и Эйнштейном. С другой стороны, если вы хотите победы Доу, вы должны сперва провести голосование между Шмоу и Эйнштейном, а потом между Эйнштейном и Доу. Поскольку выбор членов комиссии нетранзитивен при условии, что решает большинство, на основании парного сравнения, человек, определяющий повестку, имеет контроль над выборами.

Обратимость предпочтений

Если нетранзитивность не самое худшее, то в некоторых случаях предпочтения «обратимы» в зависимости от того, в каком порядке они были произведены. Одно из первых исследований, зафиксировавших необратимости предпочтения, было опубликовано Сарой Лихтенштейн и Полем Словиком в 1971 году. Лихтенштейн и Словик писали, что выбор между двумя лотереями может включать в себя более разнообразные психологические процессы, чем подсчет и оценка каждой из альтернатив в отдельности (т.е. установление количества долларов, как они выразились). Оба они предположили, что выбор должен в основном определяться шансами на выигрыш, тогда как оценка должна в первую очередь зависеть от суммы, которую можно выиграть или проиграть.

Они проверили эту гипотезу в трех экспериментах. В каждом опыте они сначала знакомили испытуемых с несколькими парами пари. Каждая пара имела близкие ожидаемые величины, но одна всегда имела высокую возможность выигрыша, а другая — высокую ставку (см. рис. 8.6). После того как испытуемые определяли, какое пари выбирают из каждой пары, они оценивали лотереи каждую в отдельности. Оценки собирались следующим образом: испытуемым говорили, что они стали обладателями лотерейного билета, и спрашивали, за какую минимальную сумму они бы согласились его продать. (121:)

РИСУНОК 8.6

Эти азартные игры были использованы Сарой Лихтенштейн и Полем Словиком в эксперименте по обратимости предпочтений. ОЦ — ожидаемая ценность (взято из Лихтенштейн и Словика, 1971).

Пара

Наибольшая

оц

Наибольший

оц

вероятность

выигрыш

1

99% выиграть $4

$3,95

33% выиграть $16

$3,94

1% проиграть $1

67% проиграть $2

2

95% выиграть $2,50

$2,34

40% выиграть $8,50

$2,50

5% проиграть $0,75

60% проиграть $1,50

3

95% выиграть $3

$2,75

50% выиграть $6,50

$2,75

5% проиграть $2

50% проиграть $1

4

90% выиграть $2

$1,60

50% выиграть $5,25

$1,88

10% проиграть $2

50% проиграть $1,50

5

80% выиграть $2

$1,40

20% выиграть $9

$1,40

20% проиграть $1

80% проиграть $50

6

80% выиграть $4

$3,10

10% выиграть $40

$3,10

20% проиграть $50

90% проиграть $1

В первом эксперименте студенты выбирали пари, которые бы они предпочли заключить, и определяли, за какую минимальную сумму они согласились бы продать лотерейный билет. Для измерения обратимости предпочтения Лихтенштейн и Словик подсчитали процентное отношение продажной цены лотерей с высоким выигрышеми лотерей с большим шансом на успехв каждой паре. Исследователи обнаружили, что 73% испытуемых постоянно показывали обратимость предпочтения. Второй эксперимент в общих чертах повторял первый, но способ оценки был иной, а в третьем проводились длинная и точная инструкции для каждого испытуемого в отдельности, а лотереи разыгрывались по-настоящему. И второй, и третий опыты продемонстрировали убедительную обратимость предпочтения.

Конечно, обратимость, обнаруженная Лихтенштейном и Словиком в 1971 году, была тщательно проведенным лабораторным экспериментом, и по-прежнему стоит вопрос: встречается ли это явление за пределами лаборатории? Чтобы ответить на этот вопрос, Лихтенштейн и Словик в 1973 году повторили эксперимент в казино в Лас-Вегасе. Вооружившись компьютером и рулеткой, они собрали данные у 44 игроков (включая семь профессионалов). (122 :)

Результаты оказались впечатляющими. В случаях, когда люди предпочитали игру с большим шансом на победу игре с большим выигрышем, 81% из них оценивал выше (дороже) игру с большим выигрышем. Эта пропорция обратимости даже выше, чем обнаруженная при первом эксперименте. Видно, таким образом, что обратимость предпочтений не ограничивается лабораторией, а проявляется у людей с опытом принятия решений, к тому же заинтересованных в этих решениях материально.

Со времени этих первых экспериментов был поставлен ряд опытов, повторяющих и продолжающих базовые исследования Лихтенштейн и Словика (Гретер и Плотт, 1979; Шкейд и Джонсон, 1989; Словик, Гриффин и Тверски, 1990; Словик и Лихтенштейн, 1983; Тверски, Словик и Канеман, 1990). Обратимость предпочтения сильна и не снижается при финансовой заинтересованности (Тверски, Словик и Канеман, 1990). Когда людей просят выбрать одно из двух пари, они уделяют основное внимание шансам на выигрыш, но когда их просят назвать цену каждого пари, они смотрят на то, каков возможный выигрыш.

1 ... 19 20 21 22 23 24 25 26 27 ... 63
На этой странице вы можете бесплатно читать книгу Психология оценки и принятия решений - Скотт Плаус бесплатно.

Оставить комментарий